开源的2D/3Dslam介绍

本文介绍了多种2D和3D激光SLAM算法,包括gmapping、Hector slam、karto slam、lago slam、core slam和cartographer。在2Dslam中,gmapping适用于小场景地图构建,Hector slam则适合不平坦区域的无人机和地面小车。3D激光slam方面,重点讲解了LOAM及其优化版A-LOAM、LeGO-LOAM和LIO-Mapping等,这些算法在不同场景下各有优缺点,适用于不同的硬件配置和应用需求。
摘要由CSDN通过智能技术生成

学习目标:

  • 2Dslam介绍
  • 3Dslam介绍

学习内容:

1.2Dslam介绍

        1.slam_gmapping            

                        Gmapping是应用最为广泛的2D slam方法,主要是利用RBPF(Rao-Blackwellized                 ParticleFilters)方法,所以需要了解粒子滤波的方法(利用统计特性描述物理表                              达式下的结果)。Gmapping在RBPF算法上做了两个主要的改进:改进提议分布和选                      择性重采样。

                        Gmapping可以实时构建室内地图,在构建小场景地图所需的计算量较小且精度                       较高。相比Hector SLAM对激光雷达频率要求低、鲁棒性高(Hector 在机器人快速                         转向时很容易发生错误匹配,建出的地图发生错位,原因主要是优化算法容易陷入                         局部最小值);而相比Cartographer在构建小场景地图时,Gmappin

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jjm2002

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值