目录
查看电脑显卡支持的cudawin11_3060显卡配置深度学习环境tensorflow-gpu2.4.0(CUDA 11.0,cuDNN 8.0,pyth - 哔哩哔哩 (bilibili.com)
cuda是11.4 ,单gpu
我的环境conda名称是p2b1.3 其实torch是1.2系列,其他环境就是下面标注的的 ,也许还会缺一点,直接后面补上即可,无伤大雅
安装cuda的时候,下面有那个教程,是真实有效的
代码中这个地址换了如下的,记得pip配置清华源,不然可能下不下来
pip install git+https://github.com/v-wewei/etw_pytorch_utils.git@v1.1.1#egg=etw_pytorch_utils
h5py的简介
使用h5py库读写超过内存的大数据 。在简单数据的读操作中,我们通常一次性把数据全部读入到内存中。读写超过内存的大数据时,有别于简单数据的读写操作,受限于内存大小,通常需要指定位置、指定区域读写操作,避免无关数据的读写。 h5py库刚好可以实现这一功能。
h5py的优势:速度快、压缩效率高,总之,numpy.savez和cPickle存储work或不work的都可以试一试h5py!h5py文件是存放两类对象的容器,数据集(dataset)和组(group),dataset类似数组类的数据集合,和numpy的数组差不多。group是像文件夹一样的容器,它好比python中的字典,有键(key)和值(value)。group中可以存放dataset或者其他的group。”键”就是组成员的名称,”值”就是组成员对象本身(组或者数据集),下面来看下如何创建组和数据集。
pip install h5py==2.10.0
查看有什么版本
目前觉得2.10.0可能是作者安装的
numpy
报错和版本低解决办法
numpy版本问题_Dontla的博客-CSDN博客_numpy版本推荐
目测版本是1.7.0附近
pip install numpy==1.7.0
torch和torchvision

这里我选择torch==1.2.0 torchvision==0.4.0
pprint无需安装,python自带
enum34
直接用最新的2020/5月
future
版本用future==0.18.0
//---------这里才开始知道看日期
pandas
pandas==1.1.0
shapely
shapely==1.6.0
matplotlib
matplotlib==3.1.0
pomegranate
pomegranate==0.12.0
ipykernel
ipykernel==5.1.1
jupyter
jupyter==1.0.0
imageio
imageio==2.6.0
pyquaternion
pyquaternion==0.9.8
conda基本操作
# 配置指定python版本的环境
conda create -n env_name python=2.7
conda create --name env_name python=3.5 numpy scipy# 列出所有的环境
conda env list
conda info -e
conda info --envs# 激活环境
conda activate env_name# 退出环境
conda decativate env_name# 删除环境
conda remove -n env_name --all# 环境中的包的管理
conda install pkg_name -n env_name
conda uninstall pkg_name -n env_name
conda remove pkg_name -n env_name# 复制环境
conda create --name new_env_name --clone old_env_name# 分享环境
# 把已有的环境分享给其他人,A电脑到B电脑
# A电脑上的操作
conda activate target_env
conda env export > target_env.yml# 从A copy yml文件,B电脑上的操作
conda env create -f target_env.yml激活 环境
source active 环境名称
克隆环境
conda create -n BBB --clone AAA
加速
vim ~/.pip/pip.conf
timeout =6000
index-url = https://pypi.tuna.tsinghua.edu.cn/simple
[install]
use-mirrors =true
mirrors =http://pypi.douban.com/simple/
trusted-host =pypi.douban.com

nvidia-smi指令报错
nvidia-smi指令报错:Failed to initialize NVML: Driver解决 - 知乎
nvidia卸载
sudo apt-get remove cuda
sudo apt autoremove
sudo apt-get remove cuda*
cuda安装与卸载,真实有效
NVIDIA CUDA Toolkit 11.0 安装与卸载(Linux/Ubuntu) - 知乎
cuda对应的torch
Previous PyTorch Versions | PyTorch
卸载
sudo /usr/local/cuda/bin/cuda-uninstall
再把目录里删除
下载cuda10.0
wget https://developer.nvidia.com/compute/cuda/10.0/Prod/local_installers/cuda_10.0.130_410.48_linux
sudo sh cuda_10.0.130_410.48_linux.run
查看gpu个数
n_gpu = torch.cuda.device_count()
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"torch.cuda.empty_cache()
torch.cuda.get_device_name(0)
返回gpu名字,设备索引默认从0开始;
python代码运行到后台
linux环境后台运行python脚本并将打印输出到日志文件中。_fangzi1123的博客-CSDN博客_python脚本后台运行输出日志
kitti数据集介绍
KITTI数据集--参数_cuichuanchen3307的博客-CSDN博客_kitti
点云术语理解
点云入门知识_zihao_c的博客-CSDN博客_点云的应用场景
点云的产生pointNet的优势
【3D计算机视觉】从PointNet到PointNet++理论及pytorch代码_小执着的博客-CSDN博客_pointnet
单核gpu测试报错,添加strict=False
model.load_state_dict(checkpoint['state_dict'], strict=False)
原文 解决加载模型错误方法总结RuntimeError: Error(s) in loading state_dict for Net: Missing key(s) - 灰信网(软件开发博客聚合)
激光雷达了解
激光雷达点云采集原理以及在自动驾驶中的应用(中文字幕)_哔哩哔哩_bilibili
用python打开点云的bin文件
点云就是一个一个点构成,每个点都是一个坐标,如果带有颜色,则也可以做分类
python代码终端调试命令
python -m pdb hello.py
这样程序会自动停在第一行,等待你进行调试,命令参数如下
断点相关命令:
设置断点: (Pdb) b 8 #断点设置该文件的第8行(b即break的首字母)
显示所有断点:(Pdb) b #b命令,没有参数,显示所有断点
删除断点:(Pdb) cl 2 #删除第2个断点 (clear的首字母)Step Over:(Pdb) n #单步执行,next的首字母
Step Into:(Pdb) s #step的首字母
Setp Return:(Pdb) r #return的首字母 在执行到函数内部时;执行代码到return完毕Resume:(Pdb) c #continue的首字母 直接全部执行完毕----->直到遇到断点
Run to Line:(Pdb) j 10 #运行到地10行,jump的首字母(Pdb) p param #查看当前param变量值
(Pdb) l #查看运行到某处代码
(Pdb) a #查看全部栈内变量(Pdb) h #帮助,help的首字母
(Pdb) q #退出,quit的首字母
pytorch语法补充,方便阅读代码
一维
arr[2:]从左到右从0开始数
arr[:2]从左到右截取2个数字

二维
tensor类型

arr1[:,1]是第二列
arr1[:,0]是第一列
arr1[1,:]是第二行

三维
tensor


本文概述了使用h5py处理大数据、numpy版本升级、torch与torchvision的选择,以及conda环境管理。涉及pandas、shapely等库的安装,解决GPU相关问题如nvidia-smi报错,cuda的安装与卸载,以及点云处理技术、激光雷达和Python代码调试。
1032





