1 简介
针对二维熵法阈值分割中精度和时间性能较差的问题,提出了基于二维熵 - 量子遗传算法的多阈值图像分割方法。定义了二维阈值量子染色体的编码方式,解决了传统遗传算法优化二维最大指数熵阈值过程中速度慢、多样性小的缺点;在产生阈值解时,提出了半随机策略来代替传统的完全随机策略,加快寻优速度;改进了量子门旋转角度方式,提出了一种新的自适应旋转角度的方法,提高了算法的精度和收敛速度。并进行了分割实验和SAR 图像变化检测实验。结果表明:该方法比基于一维熵的图像分割算法具有更高的抗噪性;其寻优速度较完全随机产生阈值解的量子遗传算法提高了 3 倍 ~5 倍;避免了算法发散或过早收敛。与其他基于阈值分割的变化检测算法相比,性能更好。




本文提出了一种基于二维熵-量子遗传算法的多阈值图像分割方法,解决传统方法在精度和时间性能上的问题。通过定义二维阈值量子染色体编码、采用半随机策略和自适应旋转角度的量子门,提高了算法精度和收敛速度。实验结果显示,该方法具有更好的抗噪性和更快的寻优速度,优于基于一维熵的图像分割算法。
订阅专栏 解锁全文
925

被折叠的 条评论
为什么被折叠?



