【图像分割】基于量子遗传算法优化最大熵法图像多阈值实现图像分割matlab代码

本文提出了一种基于二维熵-量子遗传算法的多阈值图像分割方法,解决传统方法在精度和时间性能上的问题。通过定义二维阈值量子染色体编码、采用半随机策略和自适应旋转角度的量子门,提高了算法精度和收敛速度。实验结果显示,该方法具有更好的抗噪性和更快的寻优速度,优于基于一维熵的图像分割算法。

1 简介

针对二维熵法阈值分割中精度和时间性能较差的问题,提出了基于二维熵 - 量子遗传算法的多阈值图像分割方法。定义了二维阈值量子染色体的编码方式,解决了传统遗传算法优化二维最大指数熵阈值过程中速度慢、多样性小的缺点;在产生阈值解时,提出了半随机策略来代替传统的完全随机策略,加快寻优速度;改进了量子门旋转角度方式,提出了一种新的自适应旋转角度的方法,提高了算法的精度和收敛速度。并进行了分割实验和SAR 图像变化检测实验。结果表明:该方法比基于一维熵的图像分割算法具有更高的抗噪性;其寻优速度较完全随机产生阈值解的量子遗传算法提高了 3 倍 ~5 倍;避免了算法发散或过早收敛。与其他基于阈值分割的变化检测算法相比,性能更好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值