✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🌿 往期回顾可以关注主页,点击搜索
🔥 内容介绍
弧齿锥齿轮传动是一种广泛应用于汽车、航空航天和机器人等领域的传动装置。与传统的直齿锥齿轮相比,弧齿锥齿轮具有承载能力高、噪音低、传动平稳等优点。因此,对弧齿锥齿轮传动的分析和设计至关重要。
弧齿锥齿轮传动的几何分析
弧齿锥齿轮传动是由一对锥齿轮组成的,其齿形为弧线。齿轮的几何参数包括齿顶圆半径、齿根圆半径、法线模数和螺旋角等。这些参数决定了齿轮的传动比、接触情况和强度。
弧齿锥齿轮传动的接触分析
接触分析是弧齿锥齿轮传动分析的重要组成部分。它可以确定齿轮在啮合过程中接触点的分布和形状。接触分析通常采用有限元方法或解析方法进行。通过接触分析,可以评估齿轮的承载能力、磨损情况和传动平稳性。
弧齿锥齿轮传动的载荷分析
载荷分析是确定齿轮传动中齿轮所受载荷的过程。齿轮所受载荷包括齿面接触载荷、弯曲载荷和扭转载荷。这些载荷会影响齿轮的强度和寿命。载荷分析通常采用有限元方法或解析方法进行。
弧齿锥齿轮传动的强度分析
强度分析是评估齿轮传动中齿轮是否能够承受所受载荷的过程。齿轮的强度分析主要包括齿面接触强度分析和齿根弯曲强度分析。齿面接触强度分析用于评估齿轮齿面是否会发生点蚀或胶合。齿根弯曲强度分析用于评估齿轮齿根是否会发生弯曲断裂。
弧齿锥齿轮传动的效率分析
效率分析是评估齿轮传动中能量损失的过程。齿轮传动的能量损失主要包括摩擦损失、搅动损失和泄漏损失。效率分析通常采用解析方法或实验方法进行。通过效率分析,可以优化齿轮传动的设计,提高其传动效率。
弧齿锥齿轮传动的优化设计
弧齿锥齿轮传动的优化设计是指通过调整齿轮的几何参数、材料和制造工艺,以提高齿轮传动的性能。优化设计可以采用有限元方法或遗传算法等方法进行。通过优化设计,可以提高齿轮传动的承载能力、传动平稳性、效率和寿命。
结论
弧齿锥齿轮传动分析是一项复杂而重要的任务。通过对弧齿锥齿轮传动的几何分析、接触分析、载荷分析、强度分析、效率分析和优化设计,可以深入了解齿轮传动的性能,并为齿轮传动的设计和应用提供科学依据。
📣 部分代码
gamaf10=40.0031; %………………小轮根锥角
gamaf1=gamaf10*pi/180;
C=0.35
D=0.0 %……切削滚比修正系数(小轮凹面)
alphaP0=19.0833; %………………加工小轮凹面时的刀具齿形角
alphaP=alphaP0*pi/180;
%………………加工小轮齿面(凹)的刀具参数和加工调整参数………………%
rop=0.64 %………………加工小轮的刀尖过度圆角半径
dc1=150.6; %………………刀尖直径(凹)
Sr1=82.4911; %………………径向刀位
q10=51.9687; %………………角向刀位
q1=q10*pi/180;
XB1=1.7796; %………………床位
XD1=-2.7684; %………………轴向轮位
Em1=-1.3150 ; %………………垂直轮位
mcP1=1.4740; %………………切削滚比
thetaP=-0.9678;
phic1=-0.0094;
rc1=dc1/2; %……加工凹面时的刀尖半径
mcP=1/(mcP1*(1-2*C*phic1-3*D*phic1^2));%……切削滚比
phi1=mcP1*(phic1-C*phic1^2-D*phic1^3); %……加工时小轮的转角
sP=Sr1*(mcP-sin(gamaf1))*cos(alphaP)*sin(thetaP-q1)/(cos(gamaf1)*sin(phic1+thetaP))-(Sr1*sin(phic1+q1)+Em1)*sin(alphaP)/sin(phic1...
+thetaP)+Em1*tan(gamaf1)*cos(alphaP)/tan(phic1+thetaP)-rc1*sin(alphaP)-XB1*cos(alphaP);
%………………由刀盘坐标系Sb1到固连于被加工大轮坐标系S1的各坐标变换矩阵………………%
Mc1P=[1 0 0 Sr1*cos(q1);0 1 0 Sr1*sin(q1);0 0 1 0;0 0 0 1]; %……SP-->Sc1
Mm1c1=[cos(phic1) -sin(phic1) 0 0;sin(phic1) cos(phic1) 0 0;0 0 1 0;0 0 0 1]; %……Sc1-->Sm1
Ma1m1=[1 0 0 0;0 1 0 Em1;0 0 1 -XB1;0 0 0 1]; %……Sm1-->Sa1
Mb1a1=[sin(gamaf1) 0 -cos(gamaf1) 0;0 1 0 0;cos(gamaf1) 0 sin(gamaf1) -XD1;0 0 0 1]; %……Sa1-->Sb1
M1b1=[cos(phi1) sin(phi1) 0 0;-sin(phi1) cos(phi1) 0 0;0 0 1 0;0 0 0 1]; %……Sb1-->S1
%………………加工凹面的刀具切削刃圆锥面方程及其法向量在Sb1中的表达
rP=[(rc1+sP*sin(alphaP))*cos(thetaP);(rc1+sP*sin(alphaP))*sin(thetaP);-sP*cos(alphaP);1];
%………………加工凹面的刀具切削刃圆锥面方程在S1中的表达
r1=M1b1*Mb1a1*Ma1m1*Mm1c1*Mc1P*rP
Lc1P=[1 0 0;0 1 0;0 0 1];
Lm1c1=[cos(faig) -sin(faig) 0;sin(faig) cos(faig) 0;0 0 1];
La1m1=[1 0 0;0 1 0;0 0 1];
Lb1a1=[sin(ar2) 0 -cos(ar2) ;0 1 0;cos(ar2) 0 sin(ar2)];
L1b1=[cos(fai1) sin(fai1) 0;-sin(fai1) cos(fai1) 0;0 0 1];
nP=[cos(rfa2)*cos(sitag);cos(rfa2)*sin(sitag);sin(rfa2)];
r1=M1b1*Mb1a1*Ma1m1*Mm1c1*Mc1P*rP;
n1=L1b1*Lb1a1*La1m1*Lm1c1*Lc1P*nP
%………………齿面点(凹面)在三维直角坐标系中各坐标分量的表达式
x1=r1(1)
y1=r1(2)
z1=r1(3)
⛳️ 运行结果
🔗 参考文献
[1]邓文奎,袁茹,王三民,等.支撑变形下弧齿锥齿轮传动的承载接触有限元分析[J].机械制造, 2014, 52(11):3.DOI:10.3969/j.issn.1000-4998.2014.11.008.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类