✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
随着能源消耗的日益增长和环境保护意识的增强,提高建筑能效成为了全球关注的焦点。建筑供暖系统作为建筑能耗的主要部分,其优化控制至关重要。传统的供暖系统通常采用简单的控制策略,例如恒温器控制,无法有效应对建筑内热负荷的动态变化,导致供暖能耗过高和室内舒适性下降。
近年来,模型预测控制(Model Predictive Control,MPC)技术在建筑供暖系统优化控制方面得到了广泛应用。MPC是一种基于模型的先进控制方法,可以预测未来一段时间内的系统行为,并根据预测结果优化控制策略,从而实现更佳的节能效果和舒适性。
MPC控制原理
MPC控制原理基于系统模型和优化算法,其主要步骤如下:
-
模型建立: 首先需要建立建筑供暖系统的数学模型,例如热力学模型、流体动力学模型等。模型应能够描述系统在不同输入和扰动下的动态行为。
-
预测未来系统行为: 利用模型预测未来一段时间内的系统状态,例如室内温度、能源消耗等。
-
优化控制策略: 根据预测结果,优化控制策略,例如设定加热器功率、调节阀开度等,以满足设定目标,例如保持舒适的室内温度、最小化能源消耗等。
-
执行控制策略: 将优化后的控制策略应用于实际系统,控制供暖系统的运行。
-
更新模型参数: 根据实际运行数据,定期更新模型参数,提高控制策略的准确性和有效性。
MPC控制在建筑供暖系统中的应用
MPC控制在建筑供暖系统中的应用主要体现在以下几个方面:
-
优化能源消耗: MPC可以根据建筑内热负荷的动态变化,实时调整供暖系统的运行状态,减少不必要的能源消耗,提高系统能效。
-
提高室内舒适性: MPC可以根据用户的设定目标,例如温度、湿度等,控制供暖系统的运行,保持舒适的室内环境。
-
降低运营成本: 通过减少能源消耗和提高系统效率,MPC可以降低建筑供暖系统的运营成本。
Matlab代码实现
以下是一个简单的MPC控制建筑物供暖系统的Matlab代码示例,用于演示基本原理和代码实现方法。% 优化问题设置
H = eye(N);
f = zeros(N,1);
Aeq = [C; -C];
beq = [T_set; -T_set];
lb = zeros(N,1);
ub = Q_max*ones(N,1);
% 初始化状态
T = T_out;
% 控制循环
for i = 1:N
% 预测未来状态
T_pred = A*T + B*u(i);
% 优化控制策略
u(i) = quadprog(H,f,[],[],Aeq,beq,lb,ub);
% 执行控制策略
T = T_pred;
% 更新模型参数
% ...
end
代码说明:
-
代码首先定义了系统参数,例如室内温度设定值、室外温度、加热器最大功率等。
-
然后建立了建筑物供暖系统的简单模型,使用状态空间模型描述系统动态行为。
-
接着定义了预测时域和优化问题的参数。
-
最后,使用循环进行控制,通过模型预测未来状态,优化控制策略,并执行控制指令。
结论
MPC控制技术能够有效优化建筑物供暖系统的运行,提高系统能效和舒适性,降低运营成本。通过Matlab代码实现,可以方便地进行仿真分析,验证MPC控制策略的效果。随着人工智能和机器学习技术的不断发展,MPC控制技术在建筑物供暖系统中的应用前景广阔。
⛳️ 运行结果
🔗 参考文献
[1] 黄成静,刘红军,王东风.基于MPC的单元机组负荷控制系统仿真[J].计算机仿真, 2003, 20(9):4.DOI:10.3969/j.issn.1006-9348.2003.09.046.
[2] 边伟,陈勇,杨柳.基于自动代码生成技术的汽车电子控制系统设计[J].现代电子技术, 2016, 39(24):5.DOI:CNKI:SUN:XDDJ.0.2016-24-033.
[3] 罗桐,陈峦,黄琦,等.基于储能系统的光伏功率预测误差补偿控制[J].电源技术, 2017, 041(010):1433-1436.
[4] 高淑芳.基于MPC方法的电锅炉蓄热系统优化控制研究[D].北京建筑大学,2023.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类