【考虑碳交易机制】考虑柔性负荷的综合能源系统低碳经济优化调度附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着全球气候变化日益严峻,减少碳排放、实现可持续发展已成为全球共识。能源系统作为碳排放的主要来源,其低碳转型势在必行。传统的能源系统往往以单一能源形式供应,能源效率低下,且难以有效利用可再生能源。综合能源系统 (Integrated Energy System, IES) 通过多种能源形式的集成互补,可以显著提高能源利用效率,降低碳排放。然而,如何经济高效地调度 IES,使其在满足用户需求的同时,最大程度地降低碳排放,是一个亟待解决的关键问题。本文将围绕“考虑碳交易机制的柔性负荷的综合能源系统低碳经济优化调度”这一主题,深入探讨其理论基础、关键技术以及实际应用前景。

一、综合能源系统低碳经济优化调度的重要性与挑战

传统的电力系统优化调度主要关注运行成本,很少考虑环境因素,导致大量的碳排放。随着碳交易机制的引入,碳排放不再是免费的,而是成为了企业的经营成本。因此,将碳排放成本纳入能源系统调度,并进行低碳经济优化,对于推动能源系统绿色转型具有重要意义。

综合能源系统将电力、热力、冷力、燃气等多种能源形式进行集成,能够实现能源的梯级利用,提高能源效率,降低碳排放。例如,利用余热回收技术,可以将发电过程中产生的废热用于供热或制冷,从而减少对化石燃料的依赖。此外,IES 还可以集成可再生能源,如太阳能、风能等,进一步降低碳排放强度。

然而,IES 的低碳经济优化调度面临着诸多挑战:

  • 多能耦合复杂性:

     IES 涉及多种能源形式的转换和交互,其能量流动关系复杂,优化调度需要考虑多种能源间的耦合约束,增加了问题的复杂性。

  • 可再生能源不确定性:

     可再生能源的出力具有间歇性和波动性,给 IES 的稳定运行带来了挑战。如何有效地集成和利用可再生能源,需要更加精细的调度策略。

  • 碳交易机制的影响:

     碳交易机制对 IES 的调度决策产生直接影响,需要考虑碳价波动、碳配额限制等因素,以制定合理的碳减排策略。

  • 柔性负荷的利用:

     传统的需求响应侧重于价格激励,用户响应程度有限。柔性负荷控制通过主动调节用户的用能行为,可以更有效地平抑负荷波动,提高系统运行的灵活性和稳定性,但也需要考虑用户体验和隐私保护。

二、碳交易机制对 IES 低碳经济优化调度的影响

碳交易机制是利用市场机制控制温室气体排放的一种有效手段。其基本原理是为企业设定碳排放配额,允许企业在碳市场上进行碳排放权的买卖。如果企业的碳排放量超过配额,则需要从市场上购买碳排放权;如果企业的碳排放量低于配额,则可以将剩余的碳排放权出售给其他企业。

碳交易机制对 IES 的低碳经济优化调度产生以下影响:

  • 碳成本的引入:

     碳交易机制将碳排放纳入企业的成本核算,迫使企业考虑减少碳排放,提高能源利用效率。

  • 排放约束的增加:

     碳排放配额的设定限制了 IES 的碳排放总量,促使企业寻求更低碳的能源替代方案。

  • 调度策略的改变:

     碳交易机制改变了 IES 的调度目标,从单纯的成本最小化转变为成本和碳排放的综合优化。

  • 技术创新的激励:

     碳交易机制激励企业投资于低碳技术,如可再生能源发电、碳捕获与封存等,以降低碳排放成本。

三、柔性负荷在 IES 低碳经济优化调度中的应用

柔性负荷是指用户在一定范围内可以调整用能时间或用能强度的负荷,如可调节的家用电器、储能设备、电动汽车充电等。通过合理地控制柔性负荷,可以平抑负荷波动,提高系统运行的灵活性和稳定性,促进可再生能源的消纳,从而降低碳排放。

在 IES 的低碳经济优化调度中,柔性负荷可以发挥以下作用:

  • 削峰填谷:

     通过将高峰时段的负荷转移到低谷时段,可以降低高峰负荷需求,减少对高碳排放发电机的依赖。

  • 可再生能源消纳:

     当可再生能源发电量较高时,可以利用柔性负荷吸收多余的电力,避免弃风弃光现象的发生。

  • 系统平衡:

     当系统出现功率缺额或过剩时,可以利用柔性负荷进行快速调节,维持系统的平衡。

  • 辅助服务:

     柔性负荷可以为电网提供频率调节、电压支撑等辅助服务,提高电网的稳定性和可靠性。

四、考虑碳交易机制的柔性负荷的IES低碳经济优化调度模型构建

构建考虑碳交易机制的柔性负荷的IES低碳经济优化调度模型需要考虑以下因素:

  • 目标函数:

     通常采用成本最小化或收益最大化作为目标函数,其中包括能源购买成本、运行维护成本、碳排放成本等。

  • 约束条件:

     包括能量平衡约束、设备运行约束、碳排放约束、用户用能需求约束等。

  • 决策变量:

     包括各种能源设备的出力、柔性负荷的调节量、碳排放交易量等。

  • 模型类型:

     可以采用线性规划、混合整数规划、非线性规划等数学模型进行求解。

具体而言,可以采用以下步骤构建优化调度模型:

  1. 确定目标函数: 目标函数为IES运行总成本最小化,包括:

    • 能源购买成本:从电网、燃气网等外部能源网络购买能源的成本。

    • 设备运行维护成本:IES内部各种设备的运行和维护成本。

    • 碳交易成本:根据碳排放量和碳价计算的碳交易成本。

  2. 建立约束条件:

    • 能量平衡约束:

       保证IES内部各种能量的供需平衡,例如电力平衡、热力平衡、冷力平衡等。

    • 设备运行约束:

       限制各种设备的运行范围,例如发电机组的出力范围、储能设备的充放电功率等。

    • 碳排放约束:

       限制IES的碳排放总量,可以根据政府分配的碳排放配额设定。

    • 柔性负荷约束:

       限制柔性负荷的调节范围和响应时间。

  3. 建立柔性负荷模型: 根据不同类型的柔性负荷建立数学模型,例如:

    • 可平移负荷:

       允许在一定时间内调整用能时间,例如洗衣机、洗碗机等。

    • 可削减负荷:

       允许在一定时间内减少用能功率,例如空调、照明等。

    • 可转移负荷:

       允许将部分负荷转移到储能设备上,例如电动汽车充电。

  4. 制定优化算法: 选择合适的优化算法对模型进行求解,例如:

    • 线性规划 (LP):

       适用于模型为线性且决策变量为连续变量的情况。

    • 混合整数规划 (MIP):

       适用于模型包含整数变量的情况,可以处理设备的启停状态等离散决策。

    • 非线性规划 (NLP):

       适用于模型包含非线性函数的情况,例如设备的效率与出力之间的非线性关系。

    • 启发式算法:

       适用于复杂问题,可以快速找到近似最优解,例如遗传算法、粒子群算法等。

⛳️ 运行结果

🔗 参考文献

[1] 张勇,范斯达,高海荣,等.融合柔性负荷和碳交易机制的矿山综合能源系统运行优化[J].电力系统及其自动化学报, 2023, 35(4):11.

[2] 黄传峰,陶之朋,白标,等.考虑柔性负荷与阶梯碳交易机制的综合能源优化调度[J].电工电气, 2024(5):11-18.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值