✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
一、引言
在深度学习广泛应用于各类预测与分析任务的当下,Transformer 和 BiLSTM 等模型凭借强大的特征提取与序列处理能力,在时间序列预测、自然语言处理等领域取得优异成果。然而,这些复杂模型如同 “黑箱”,难以直观解释其决策过程和影响因素,限制了模型在医疗、金融等对可解释性要求高的领域的应用 。SHAP(SHapley Additive exPlanations)分析作为一种先进的模型可解释性工具,能够量化每个输入特征对模型输出的贡献,为揭开模型 “黑箱” 提供了有效途径。将 SHAP 分析应用于 Transformer-BiLSTM 组合模型,能让模型的可解释性不再成为困扰,有助于深入理解模型行为,提升模型可信度与实用性。
二、SHAP 分析原理与意义
2.1 SHAP 值计算原理
SHAP 值的计算基于博弈论中的 Shapley 值概念。在一个预测模型中,将每个输入特征视为博弈中的参与者,模型的预测结果看作是所有参与者共同合作的收益。SHAP 值衡量的是在所有可能的特征组合顺序下,某个特征加入组合时对模型输出的平均边际贡献。
具体计算时,对于给定的样本,SHAP 值通过近似算法或精确算法得出。精确算法适用于特征数量较少的情况,通过枚举所有可能的特征组合来计算;近似算法如 TreeSHAP(适用于树模型)、DeepSHAP(适用于深度学习模型)等,则利用模型结构的特性进行高效计算,以快速得到近似的 SHAP 值 。
2.2 SHAP 分析在模型可解释性中的作用
SHAP 分析为模型可解释性提供了统一的衡量标准。它不仅能给出每个特征对模型输出的影响方向(正向或负向),还能量化其影响程度。通过 SHAP 值,用户可以清晰地了解到哪些特征在模型决策中起关键作用,哪些特征的影响相对较小。例如,在电力负荷预测中,利用 SHAP 分析可以明确温度、日期类型等特征对预测结果的具体贡献,帮助工程师和决策者更好地理解模型的预测逻辑,发现数据中的潜在规律,从而对模型进行优化或基于解释结果制定更合理的决策 。
三、Transformer-BiLSTM 组合模型概述
3.1 Transformer 模型
Transformer 模型基于注意力机制(Attention Mechanism),摒弃了传统循环神经网络(RNN)的递归结构,能够并行处理输入序列,大大提高了计算效率。其核心组件多头注意力机制(Multi-Head Attention),通过多个不同的注意力头从不同角度捕捉输入序列中元素之间的关系,能够有效提取全局特征和长距离依赖关系 。在自然语言处理任务中,Transformer 可以捕捉句子中词汇之间复杂的语义关联;在时间序列预测中,能挖掘时间序列不同时刻之间的潜在联系。
3.2 BiLSTM 模型
BiLSTM 由两个方向相反的长短期记忆网络(LSTM)组成。LSTM 通过遗忘门、输入门和输出门的设计,有效解决了传统 RNN 中梯度消失和梯度爆炸的问题,能够更好地处理长序列数据。BiLSTM 的双向结构使其既能学习数据的历史信息对当前状态的影响,又能捕捉未来信息对当前状态的潜在作用,在时间序列分析和自然语言处理等领域,能够更全面地挖掘序列数据的时间依赖关系和语义信息 。
3.3 组合模型优势
将 Transformer 和 BiLSTM 组合,能够充分发挥二者的优势。Transformer 强大的全局特征提取和并行计算能力,与 BiLSTM 对序列前后向依赖关系的深度挖掘能力相结合,使得组合模型在处理复杂序列数据时,既能快速提取关键特征,又能准确把握序列的时序信息,在预测精度和泛化能力上往往优于单一模型 。
四、基于 SHAP 的 Transformer-BiLSTM 组合模型分析
4.1 数据准备与模型训练
在进行 SHAP 分析前,首先需要准备合适的数据集,并完成 Transformer-BiLSTM 组合模型的训练。以时间序列预测任务为例,收集历史时间序列数据及其相关特征数据,将数据集划分为训练集、验证集和测试集。使用训练集对组合模型进行训练,通过调整模型参数(如 Transformer 的层数、注意力头数量,BiLSTM 的隐藏层单元数量等),在验证集上进行模型性能评估和超参数优化,最终在测试集上验证模型的泛化能力 。
4.2 SHAP 值计算与可视化
训练好模型后,利用 SHAP 库对模型进行分析。对于 Transformer-BiLSTM 组合模型,采用 DeepSHAP 等适合深度学习模型的近似算法计算 SHAP 值。计算完成后,通过多种可视化方式展示 SHAP 分析结果:
- 特征重要性图:以条形图形式展示各个特征的 SHAP 值绝对值的平均值,直观呈现不同特征对模型输出的重要程度排序,帮助快速定位关键特征。
- 依赖图:针对某个特定特征,绘制其 SHAP 值与该特征取值之间的关系图,揭示该特征在不同取值范围内对模型输出的影响变化趋势 。例如,在文本情感分析中,通过依赖图可以观察特定词汇的出现频率与情感预测结果之间的关联。
- 个体特征贡献图:对于单个样本,展示每个特征的 SHAP 值,明确该样本预测结果中各特征的具体贡献,有助于理解模型对单个样本的决策过程。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类