卡尔曼滤波 | Matlab实现一维卡尔曼滤波器(1D-Kalman-Filter)状态估计

本文介绍了如何使用Matlab实现一维卡尔曼滤波器进行状态估计。通过一个简单的线性系统实例——一辆以恒定速度行驶的汽车,详细阐述了卡尔曼滤波器的基本概念和数学模型,包括状态转移矩阵、控制输入矩阵、传感器测量模型等,并探讨了噪声和不确定性在卡尔曼滤波中的作用。
摘要由CSDN通过智能技术生成


效果一览

0

文章概述

Matlab实现一维卡尔曼滤波器(1D-Kalman-Filter)状态估计

研究内容

这是一个简单的一维卡尔曼滤波器,目的是了解卡尔曼滤波器的基础知识, 在定义明确的模型、具有从零均值高斯分布中得出的测量误差的一维线性系统的情况下,卡尔曼滤波器已被证明是最佳估计器。为了理解卡尔曼滤波器的工作原理,举了一个线性系统的例子; 一辆汽车以恒定速度(2m/s)在笔直的道路上行驶。 它还有一个车载 GPS,可以提供嘈杂的读数。 我们得到了它的初始位置的估计值(如果没有给出,我们假设一个),并且在每个时间步长(纪元),我们试图通过将 GPS 读数和恒定速度模型融合在一起来获得对其位置的最佳估计。

1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法如诗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值