-
来源于B站老师:DR_CAN
-
卡尔曼滤波(Kalman filtering)是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是 滤波 过程。数据滤波是去除 噪声 还原真实数据的一种 数据处理 技术,Kalman滤波在测量方差已知的情况下能够从一系列存在测量噪声的数据中,估计动态系统的状态。由于它便于计算机编程实现,并能够对现场采集的数据进行实时的更新和处理,Kalman滤波是目前应用最为广泛的滤波方法,在通信,导航,制导与控制等多领域得到了较好的应用。
% DR_CAN老师的例子 clc;clear Z = 3*(rand(50,1)*2-1)+50; X_hat = zeros(50,1); G_K = zeros(50,1); e = zeros(50,1); X_hat(1) = 40; e(1) = 5; G_K(1) = 0; for k = 2:50 G_K(k) = e(k-1)/(e(k-1)+3); X_hat(k) = X_hat(k-1)+G_K(k)*(Z(k)-X_hat(k-1)); e(k) = (1-G_K(k))*e(k-1); end figure(1); plot(Z); hold on plot(X_hat) legend('测量值','估计值');