【LlamaIndex & Workflow】 重构你的大模型应用流程,全面掌握 LlamaIndex 工作流机制

目录

一、什么是 Workflow?

1.1 简述

1.2 与传统代码区别

二、Workflow 的核心思想:事件驱动

三、用图看懂一个示例 Workflow

步骤拆解如下:

四、为什么要用 Workflow?

六、构建问答系统的 Workflow 示例流程

七、在 AI 系统中,“workflow” 常见的例子

八、实例应用场景

1. 文档预处理 Workflow(离线阶段)

2. 单轮/多轮问答 Workflow(在线阶段)

3. 文档增强检索(RAG Fusion)Workflow

4. 模块级组合式 Workflow

 九、构建问答系统流程示例

十、衍生应用:扩展场景

总结一句话


一、什么是 Workflow?

1.1 简述

简单来说,**Workflow(工作流)**是对一系列“处理步骤”的抽象。在实际应用中,尤其是需要大模型参与的多阶段任务中,我们通常不能一步到位完成所有事情,而是需要分步骤、逐步处理。

例如:“用自然语言查询数据库”这个看似简单的任务,其背后涉及多个步骤:

  1. 分析用户意图

  2. 检索相关数据库表

  3. 构造 SQL 查询

  4. 执行 SQL

  5. 把结果转成自然语言回复

每一步都依赖上一步的结果,并可能引入大模型的能力。而 LlamaIndex 的 Workflow 就是为了把这种多步骤流程清晰、高效地组织起来。


1.2 与传统代码区别

方式特点场景适用性
普通顺序代码步骤写死、耦合紧密简单线性任务
Workflow每步独立、事件驱动、可插拔多阶段、异步、需要大模型参与的复杂任务

二、Workflow 的核心思想:事件驱动

LlamaIndex 的工作流是 事件驱动的

  • 一个 Workflow 由多个 Step(步骤) 组成

  • 每个 Step 监听并处理某类 Event(事件)

  • 每个 Step 处理完后,会生成下一个 Event

  • Event 会传递到下一个 Step,直到产生 StopEvent,流程结束

可以类比为“事件接力赛”:一个事件由一个步骤处理,然后传给下一个人继续处理,直到终点。

在 LlamaIndex 中,Workflow 的三大核心:

  1. Step:每一个处理模块(如生成 SQL)

  2. Event:步骤之间传递的“消息”或状态

  3. 流程图结构:明确知道下一步是谁、该干嘛

 举个类比:

就像是“工厂流水线”:

  • 每个工人(Step)负责一件事

  • 完工后把“零件”(Event)交给下一个人

  • 最后组装成成品(StopEvent)

所以,可以总结为:

Workflow = 一种结构化、事件驱动的运行流程图,让程序每一步都清晰、可控、易维护。

如果你想让程序“更像人一样有逻辑地思考和行动”,Workflow 是非常实用的利器。


三、用图看懂一个示例 Workflow

我们来看一个典型的例子 —— “用自然语言查询数据库”的流程图:

步骤拆解如下:

  1. StartEvent

          工作流开始,用户输入自然语言查询
  2. retrieve_tables

    • Step:检索与问题相关的数据库表

    • 产生事件:TableRetrieveEvent

  3. generate_sql

    • Step:调用大模型,根据表的结构生成 SQL

    • 产生事件:TextToSQLEvent

  4. generate_response

    • Step:执行 SQL、生成查询结果的自然语言回复

    • 产生事件:StopEvent

  5. StopEvent

         工作流终点,返回 _done

 


四、为什么要用 Workflow?

相比传统的“顺序代码”或“多函数调用”方式,使用 Workflow 有几个明显优势:

解耦合:每一步处理独立,便于维护和替换
可视化:流程可以像上面一样直观展示
灵活控制:可以动态插入、跳过或重试某些步骤
易于扩展:想新增“SQL 优化”或“用户上下文理解”等步骤?加个 Step 就行

功能说明
结构化流程把系统的执行逻辑分成清晰步骤,方便开发、调试和扩展。
解耦各模块Retriever、Reranker、LLM 可以单独替换,互不影响。
便于维护与优化比如想提升检索质量,只需优化 retriever 相关步骤。
可视化执行路径工作流图可以帮助你或他人快速理解系统运行原理。

 

总结一句话

Workflow 是组织复杂多步骤任务的利器,而 LlamaIndex 的事件驱动机制让你可以清晰、灵活地管理每一步处理。

特别适用于:智能问答、自然语言接口、数据分析自动化等多阶段任务场景


六、构建问答系统的 Workflow 示例流程

从用户输入到返回回答,这个系统的 workflow 可以简要描述为:

  1. 用户输入问题

  2. 对话上下文压缩(多轮对话需要)

  3. 生成查询 Query

  4. 从 Qdrant 检索相似文段

  5. 用 Qwen rerank 模型重新排序片段

  6. 构造 Prompt

  7. 交给大语言模型生成回答

  8. 输出回答并等待下一轮提问

这些步骤构成了你的 RAG 多轮问答系统的 workflow


七、在 AI 系统中,“workflow” 常见的例子

应用场景Workflow 举例
检索增强生成(RAG)用户提问 → 向量检索 → rerank → prompt 构造 → LLM回答
数据处理文档上传 → 切分 → 嵌入 → 索引 → 检索
Agent 调度任务拆解 → 工具调用 → 汇总中间结果 → 最终回答

如果你使用的是像 LangChainLlamaIndexLangGraph,它们都支持构建、追踪或可视化 workflow。


八、实例应用场景

1. 文档预处理 Workflow(离线阶段)

documents = SimpleDirectoryReader("./data").load_data()
Settings.transformations = [SentenceSplitter(...)]
index = VectorStoreIndex.from_documents(documents, ...)

 Workflow 步骤:

文档加载 → 文本切分 → 嵌入生成 → 存入 Qdrant 向量库

实际意义:

  • 这是一条 数据索引工作流,确保文档结构化、分块、嵌入后可检索。

  • 如果你换 Embedding 模型,只需要换掉其中一步。


2. 单轮/多轮问答 Workflow(在线阶段)

response = chat_engine.chat(question)

Workflow 步骤:

用户输入 → 多轮对话上下文压缩 → 生成 query →
向量检索(Qdrant)→ rerank(Qwen)→ 构造 prompt → LLM 回答

实际意义:

  • 这是一条 RAG QA 工作流,自动串联了对话上下文压缩、查询生成、检索、rerank 与大模型生成。

  • 如果你希望将 rerank 替换为另一个模型,只需替换那一阶段。


3. 文档增强检索(RAG Fusion)Workflow

fusion_retriever = QueryFusionRetriever(...)

Workflow 步骤:

生成多个查询 → 分别执行 top-k 检索 → 合并结果 → 排序

实际意义:

  • 你实际用了一个 mini-workflow 来执行 多查询融合(Query Fusion),提高检索鲁棒性。

  • 可独立替换为其他策略,如 HyDE 检索或 CoT-RAG。


4. 模块级组合式 Workflow

以下使用的是 LlamaIndex,每个组件(retriever、reranker、synthesizer)本质上都是一个 可组合的 Workflow 步骤,组合它们的方式如下:

query_engine = RetrieverQueryEngine.from_args(
    fusion_retriever,
    node_postprocessors=[reranker],
    response_synthesizer=get_response_synthesizer(...)
)

这个就是“Workflow”的组装方式之一(Composable Retrieval Pipeline)。


 九、构建问答系统流程示例

节点描述
用户输入用户提出自然语言问题
Condense Chat History多轮对话中,压缩历史上下文为精简 query
Query Fusion Retriever生成多个子查询,提高召回质量
Qdrant 向量检索对每个子查询进行向量召回,top-k
rerank(Qwen)利用 Qwen 模型对召回结果重排序
构造 Prompt将上下文 + 问题组合为模型输入
DashScope LLM使用大模型生成回答
返回响应展示回答并等待下一轮提问

十、衍生应用:扩展场景

扩展Workflow 变化
加入语音问答语音识别 → 文本解析 → 问答工作流 → 语音合成
支持搜索+向量混合检索结构化检索 → 向量检索 → rerank → 合并生成
Agent 多工具系统任务识别 → 工具规划 → 工具调用 → 汇总生成回答

 


总结一句话

项目就是由多个 workflow 构成的系统,不同模块执行不同“步骤”,这些组合起来让系统完成检索、理解、生成等复杂任务。Workflow 的作用就是 抽象流程、支持模块替换、简化逻辑编排

### 使用 yt-dlp 下载抖音视频 为了使用 `yt-dlp` 下载抖音视频,可以按照如下方法操作。首先安装 `yt-dlp` 库,这可以通过 pip 安装工具完成: ```bash pip install yt-dlp ``` 接着,在 Python 脚本中导入必要的库并设置下载参数。对于抖音视频而言,通常需要提供视频链接以及一些特定的选项来确保下载过程顺利进行。 下面是一个简单的例子展示如何编写一段代码用于下载指定 URL 的抖音视频,并且此过程中会显示进度条以便于观察下载状态[^2]。 ```python import yt_dlp def download_douyin_video(video_url): ydl_opts = { 'outtmpl': '%(title)s.%(ext)s', # 设置输出文件名模板 'progress_hooks': [my_hook], # 添加进度回调函数 } with yt_dlp.YoutubeDL(ydl_opts) as ydl: ydl.download([video_url]) def my_hook(d): if d['status'] == 'downloading': print(f"Downloading {d['_percent_str']} - ETA: {d['_eta_str']}") elif d['status'] == 'finished': print('Download complete.') if __name__ == "__main__": video_link = "https://www.douyin.com/video/..." # 替换为实际的抖音视频链接 download_douyin_video(video_link) ``` 需要注意的是,由于平台政策的变化和技术手段的不同,某些网站可能会对直接通过第三方工具抓取其资源施加限制措施。因此上述方法可能并不总是有效;如果遇到问题,则建议查阅最新的官方文档或社区讨论获取最新解决方案[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值