语义分割——YOLOv8-Seg【train】【predict】参数汇总与调参建议

本文详细介绍了YOLOv8-Seg模型的train和predict参数,包括默认值、功能说明以及调参建议,帮助用户优化模型训练和预测过程以提升性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

语义分割——YOLOv8-Seg 参数汇总与调参建议

train 参数

参数 默认值 说明 调参建议
model None 模型文件的路径,如 yolov8m.pt -
data None 数据文件的路径,如 coco128.yaml -
epochs 100 训练周期 根据数据集大小和模型复杂度调整
time None 训练的小时数,如果已提供,则覆盖epochs 如果有时间限制,可设置该参数
patience 50 在没有明显改善的情况下,提前停止训练的等待时间 根据训练过程中的收敛情况调整
batch 16 每批图像数(-1 表示自动批次) 根据 GPU 内存大小调整
imgsz 640 输入图像尺寸 根据数据集图像大小和硬件限制(如 GPU 内存)调整
save True 是否 保存训练 checkpoint预测结果 -
save_period -1 每 x 周期保存一次 checkpoint(如果 < 1 则禁用) -
cache False 是否 使用缓存加载数据 根据数据集大小和加载速度决定
device None 运行设备,如device = 0device = cpu 根据硬件资源分配合适的设备
workers 8 加载数据的工作线程数 根据系统资源和数据集大小调整
project None 项目名称 -
name None 实验名称 -
exist_ok False 是否 覆盖现有实验 -
pretrained
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值