内积空间的定义与例
R 2 R^2 R2中的内积
注:
(1)内积中有角度的概念;
C 2 C^2 C2中的内积
内积空间的定义
设 H H H是属于 K K K上的线性空间,若存在映射 ( ⋅ , ⋅ ) : H × H → K (\cdot,\cdot):H\times H\rightarrow K (⋅,⋅):H×H→K,使得
对任意 x , y , z ∈ H , α , β ∈ K x,y,z\in H,\alpha,\beta \in K x,y,z∈H,α,β∈K,满足:
(1) ( x , x ) ≥ 0 , 且 ( x , x ) = 0 ⇔ x = θ ; (x,x)\geq 0,且(x,x)=0\Leftrightarrow x=\theta; (x,x)≥0,且(x,x)=0⇔x=θ;(非负性)
(2) ( y , x ) = ( x , y ) ‾ (y,x)=\overline{(x,y)} (y,x)=(x,y);(共轭对称性)
(3) ( α x + β y , z ) = α ( x , z ) + β ( y , z ) (\alpha x+\beta y,z)=\alpha(x,z)+\beta(y,z) (αx+βy,z)=α(x,z)+β(y,z);(对第一个变元的线性)
则称 ( ⋅ , ⋅ ) (\cdot,\cdot) (⋅,⋅)为 H H H上的一个内积,定义了内积的线性空间 H H H称为内积空间。
内积空间的例
例一
注:
(1)证明非负性,对称性及第一个变元的线性性;
(2)