内积空间的定义与例

内积空间的定义与例

R 2 R^2 R2中的内积


在这里插入图片描述

注:

(1)内积中有角度的概念;

C 2 C^2 C2中的内积

在这里插入图片描述

内积空间的定义

H H H是属于 K K K上的线性空间,若存在映射 ( ⋅ , ⋅ ) : H × H → K (\cdot,\cdot):H\times H\rightarrow K (,):H×HK,使得

对任意 x , y , z ∈ H , α , β ∈ K x,y,z\in H,\alpha,\beta \in K x,y,zH,α,βK,满足:

(1) ( x , x ) ≥ 0 , 且 ( x , x ) = 0 ⇔ x = θ ; (x,x)\geq 0,且(x,x)=0\Leftrightarrow x=\theta; (x,x)0,(x,x)=0x=θ;(非负性)

(2) ( y , x ) = ( x , y ) ‾ (y,x)=\overline{(x,y)} (y,x)=(x,y);(共轭对称性)

(3) ( α x + β y , z ) = α ( x , z ) + β ( y , z ) (\alpha x+\beta y,z)=\alpha(x,z)+\beta(y,z) (αx+βy,z)=α(x,z)+β(y,z);(对第一个变元的线性)

则称 ( ⋅ , ⋅ ) (\cdot,\cdot) (,) H H H上的一个内积,定义了内积的线性空间 H H H称为内积空间

在这里插入图片描述

内积空间的例
例一

在这里插入图片描述

注:

(1)证明非负性,对称性及第一个变元的线性性;

(2)

例二(n维复的欧式空间)

在这里插入图片描述

例三

在这里插入图片描述

例五(平方可积)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值