用泰勒展开线性化

用泰勒一阶展开线性化

在点x_{0}附近做泰勒展开:

xx_{0}很接近的时候,x-x_{0}很小,(x-x_{0})^{2}更小,所以可以忽略(x-x_{0})^{2}及后面的高阶项,得到

f(x)=f(x_{0})+f'(x_{0})(x-x_{0})

因为f(x_{0})f'(x_{0})都是常数,所以等式右边是 x的线性方程,在x_{0}点附近进行了线性化。

举例

正弦函数线性化

假设f(x)=sin(x)

那么做一阶泰勒展开,得到:

f(x)=sin(x_{0})+cos(x_{0})(x-x_{0})

如果x_{0}=0,即在0点附近做泰勒展开,得

f(x)=sin(0)+cos(0)(x-0)=x

变量的倒数线性化

例如,下面公式:

\ddot{x}+\dot{x}+\frac{1}{x}=1

因为\frac{1}{x}不是线性的,所以公式不是线性的。

现在要在平衡点附件将上面的公式线性化,那么就需要把\frac{1}{x}线性化。

在平衡点\ddot{x}\dot{x}都等于0,带入上式,得

0+0+\frac{1}{x}=1

得到平衡点x=1,记该点为x_{0},即x_{0}=1

\frac{1}{x}=f(x)

那么在平衡点附近,做泰勒展开,得

f(x)=f(x_{0})+f'(x_{0})(x-x_{0})

f'(x)=-\frac{1}{x^{2}}

x_{0}=1f'(x)=-\frac{1}{x^{2}}代入f(x),得

\frac{1}{x}=f(x)=\frac{1}{1}+(-\frac{1}{1})(x-1)=1-(x-1)=2-x

代入公式\ddot{x}+\dot{x}+\frac{1}{x}=1,得到

\ddot{x}+\dot{x}+(2-x)=1

化简,得到了在平衡点附近的线性化公式:

\ddot{x}+\dot{x}-x+1=0

二维线性化

下面考虑一个二维的系统 :

其中(x_{10},x_{20})是平衡点。

在平衡点附近做一阶泰勒展开:

这就完成了二维系统的线性化。

将最开始的变量定义,代入上面第2个公式,转换为一维的公式看看。

开始给出的变量定义:

这个线性化的结果和第2个例子用一维给出的线性化结果一样。

  • 11
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值