Euler identity

In mathematics, Euler’s identity[note 1] (also known as Euler’s equation) is the equality

{\displaystyle e^{i\pi }+1=0}{\displaystyle e^{i\pi }+1=0}
where
e is Euler’s number, the base of natural logarithms,
i is the imaginary unit, which by definition satisfies i2 = −1, and
π is pi, the ratio of the circumference of a circle to its diameter.
Euler’s identity is named after the Swiss mathematician Leonhard Euler. It is a special case of Euler’s formula {\displaystyle e^{ix}=\cos x+i\sin x}{\displaystyle e^{ix}=\cos x+i\sin x} when evaluated for x = π. Euler’s identity is considered to be an exemplar of mathematical beauty as it shows a profound connection between the most fundamental numbers in mathematics. In addition, it is directly used in a proof[3][4] that π is transcendental, which implies the impossibility of squaring the circle.

Contents
1 Mathematical beauty
2 Explanations
2.1 Imaginary exponents
2.2 Geometric interpretation
3 Generalizations
4 History
5 See also

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值