✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
电力系统瞬态稳定性是电力系统运行中至关重要的性能指标。它描述了系统在遭受大扰动(如短路故障、发电机跳闸等)后,能否保持同步运行,并最终恢复到稳定状态的能力。瞬态稳定性不足可能导致发电机失步、系统崩溃甚至大面积停电,对社会和经济造成严重影响。因此,研究和应用有效的控制手段提高电力系统的瞬态稳定性具有极其重要的意义。本文将重点探讨电力系统稳定器(PSS)和静止无功补偿器(SVC)这两种广泛应用的控制设备在改善电力系统瞬态稳定性中的作用、工作原理以及相互配合的潜在优势。
电力系统瞬态稳定性概述
电力系统在正常运行状态下,各发电机之间以同步速度运行,并保持一定的功角差。当系统遭受大扰动时,发电机转子加速或减速,功角发生变化。如果功角变化过大,超过了系统的同步极限,发电机就可能失去同步,导致系统崩溃。影响电力系统瞬态稳定性的主要因素包括:系统结构、故障类型和位置、保护设备的动作时限、发电机和调速器的特性以及励磁系统的性能等。评估瞬态稳定性的常用方法包括暂态仿真分析和功角特性分析。
电力系统稳定器(PSS)在提高瞬态稳定性中的作用
电力系统稳定器(PSS)是一种基于励磁系统的附加控制装置,其主要作用是抑制电力系统中的低频振荡,从而提高系统的暂态稳定性。低频振荡是电力系统在大扰动后常出现的现象,如果振荡幅度过大或持续时间过长,可能导致功角持续发散,最终失去同步。
PSS的工作原理通常基于输入信号(如发电机转速偏差、电力偏差、功角偏差等)通过一系列补偿环节(如超前-滞后补偿、功率放大等)产生一个附加励磁信号,叠加到主励磁系统的控制输入端。这个附加励磁信号能够产生阻尼转矩,从而抑制发电机的功角振荡。具体来说,当发电机转速加快时,PSS会产生一个负的附加励磁信号,减小发电机励磁,从而减小发电机的输出功率和加速转矩,抑制转速的继续增加。反之,当发电机转速减慢时,PSS会产生一个正的附加励磁信号,增加发电机励磁,从而增加发电机的输出功率和减速转矩,抑制转速的继续减小。
PSS的类型多样,根据输入信号的不同,可分为:
-
基于转速偏差的PSS (Δω PSS):以发电机转速偏差作为输入信号,是应用最广泛的PSS类型。
-
基于电力偏差的PSS (ΔPe PSS):以发电机输出电力的偏差作为输入信号。
-
基于功角偏差的PSS (Δδ PSS):以发电机功角偏差作为输入信号,通常需要通过测量其他信号来间接估计功角。
-
基于双信号的PSS:结合多种输入信号,如转速偏差和电力偏差,以提高控制效果。
PSS的设计是一个复杂的过程,需要考虑系统的动态特性、PSS的增益、补偿环节的参数以及PSS与主励磁系统的协调配合。不恰当的PSS参数设计可能导致系统不稳定或控制效果不佳。
静止无功补偿器(SVC)在提高瞬态稳定性中的作用
静止无功补偿器(SVC)是一种基于电力电子技术的无功功率补偿装置。它能够快速连续地调节向电力系统输出或吸收的无功功率,从而控制母线电压。SVC通常由晶闸管控制电抗器(TCR)和/或晶闸管投切电容器(TSC)组成。通过控制晶闸管的导通角,可以实现无级或分级调节感性或容性无功功率。
SVC在提高电力系统瞬态稳定性方面的作用主要体现在以下几个方面:
-
快速电压支持:在大扰动发生后,系统的电压会快速下降。SVC能够迅速向系统注入无功功率,支撑母线电压,维持系统的电压稳定。稳定的电压有利于发电机保持励磁,维持同步运行。
-
增加输电能力:SVC通过改善电压剖面和降低线路上的无功损耗,可以提高系统的输电能力,从而增加系统的稳定裕度。
-
阻尼功角振荡:虽然SVC不像PSS那样直接产生阻尼转矩,但通过快速调节电压,它可以间接影响系统的功角动态。例如,在功角振荡过程中,当发电机加速时,系统电压可能下降,SVC通过提高电压可以减小加速转矩,从而起到一定的阻尼作用。
-
改善暂态过程中的功角轨迹:通过快速提供无功功率支撑,SVC可以限制大扰动后功角的快速增长,使功角轨迹更加平缓,从而增加系统的同步裕度。
SVC的控制策略多样,包括恒电压控制、恒无功功率控制以及结合其他控制目标的复合控制策略。为了提高瞬态稳定性,通常采用基于电压偏差的快速调节控制。此外,还可以通过增加附加控制信号,使SVC具有一定的阻尼控制能力,进一步抑制低频振荡。
PSS与SVC在提高瞬态稳定性中的协同作用
PSS和SVC在提高电力系统瞬态稳定性方面具有各自的优势和特点。PSS主要通过调节发电机励磁系统来抑制低频振荡,其作用对象是发电机。而SVC主要通过调节系统的无功功率和电压来支撑系统,其作用范围更广,对电压稳定性有显著影响。
在实际应用中,将PSS和SVC结合使用,可以充分发挥两者的协同作用,取得更好的瞬态稳定性改善效果。这种协同作用体现在:
-
PSS抑制低频振荡,SVC提供电压支持:PSS有效地抑制功角振荡,而SVC在大扰动后快速支撑电压,为PSS的有效工作创造良好的电压环境。稳定的电压确保了发电机励磁系统的正常运行,从而使得PSS能够更好地发挥阻尼作用。
-
PSS和SVC的控制信号协调:可以通过优化控制策略,使PSS和SVC的控制信号相互协调,避免可能存在的冲突。例如,可以在SVC的控制系统中加入一些反映功角动态的附加控制信号,使其在抑制电压偏差的同时,也能对功角振荡产生积极的阻尼作用。
-
针对不同故障模式的优势互补:对于近区故障,电压跌落严重,SVC的电压支撑作用更为重要。对于远区故障,低频振荡可能更为突出,PSS的阻尼作用更加关键。将两者结合使用,可以提高系统对不同故障类型的鲁棒性。
-
提高系统的整体稳定裕度:PSS和SVC的联合应用,可以显著提高系统的暂态功角稳定裕度和电压稳定裕度,从而增强系统抵御大扰动的能力。
当然,PSS和SVC的联合应用也需要考虑一些挑战。例如,两者之间的相互作用可能复杂,不恰当的参数配合可能导致新的振荡模式。因此,在实际工程中,需要进行详细的仿真分析和协调设计,确保两者的最优配合。
结论
电力系统瞬态稳定性是确保电力系统可靠运行的关键因素。电力系统稳定器(PSS)和静止无功补偿器(SVC)是目前提高电力系统瞬态稳定性最常用且有效的控制手段。PSS通过调节发电机励磁系统抑制低频振荡,提高功角稳定性;而SVC通过快速调节无功功率和电压,支撑系统电压,间接改善功角动态。
将PSS和SVC结合使用,可以充分发挥两者的协同优势,在抑制低频振荡和提供电压支持方面相互补充,从而显著提高电力系统的瞬态稳定性。在未来的电力系统发展中,随着可再生能源的并网比例不断提高,电力系统的结构和动态特性将发生深刻变化,瞬态稳定性问题也将面临新的挑战。深入研究和优化PSS和SVC等控制设备的性能,以及探索更先进的控制技术,将是保障电力系统安全稳定运行的重要方向。同时,加强PSS和SVC之间的协调配合控制策略研究,对于提高系统的整体稳定水平具有重要意义。
⛳️ 运行结果
🔗 参考文献
[1] 文劲宇,孙海顺,程时杰.电力系统的次同步振荡问题[J].电力系统保护与控制, 2008, 36(12):5.DOI:10.3969/j.issn.1674-3415.2008.12.001.
[2] 房大中,牛伟,周保荣.多机系统中电力系统稳定器与可控串联补偿器阻尼控制器的协调设计[J].天津大学学报, 2006, 39(8):6.DOI:10.3969/j.issn.0493-2137.2006.08.002.
[3] 黄顺礼.抑制机组振荡用的国际典型电力系统稳定器(PSS)[J].电力建设, 2002.DOI:CNKI:SUN:DLJS.0.2002-09-015.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇