【异常值检测】基于低密度模型的异常值检测附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在数据驱动的时代,数据的规模与复杂性呈爆炸式增长。随之而来的是对数据质量的日益关注,其中异常值(Outliers)作为偏离正常模式的数据点,对数据分析、建模以及决策过程产生显著影响。它们可能指示着错误的数据录入、仪器故障、欺诈行为,甚至是未知的但重要的现象。因此,有效地识别和处理异常值成为数据科学领域中的一个重要且具有挑战性的任务。

异常值检测的方法多种多样,传统的统计方法(如Z-score、IQR)、基于距离的方法(如kNN、DBSCAN)、基于密度的方法(如LOF)、基于聚类的方法、基于模型的方法以及基于集成学习的方法等都已被广泛应用。本文将聚焦于一种重要的异常值检测范式——基于低密度模型的异常值检测。这类方法的核心思想在于,异常值往往位于数据空间中密度较低的区域,而正常数据点则集中在密度较高的区域。通过构建能够表征数据密度分布的模型,并根据模型判断数据点所处的密度水平,从而实现对异常值的识别。

基于低密度模型的异常值检测的理论基础

基于低密度模型的异常值检测的理论基础建立在这样一个核心假设之上:正常数据点在数据空间中倾向于聚集,形成高密度区域,而异常数据点则孤立地散布在低密度区域。因此,检测异常值的关键在于准确地度量每个数据点周围的局部密度,并根据该密度与周围点密度的比较来判断其异常程度。

与传统的基于距离的方法不同,基于密度的方***更加关注数据点的局部环境。例如,在一个由两个簇组成的二维数据集中,一个点可能距离其最近邻点较远,但在其局部区域内仍属于一个较稀疏的簇。而另一个点可能距离其最近邻点相对较近,但却位于两个簇之间的空白区域,其局部密度显著低于周围点的密度。在这种情况下,后者更有可能被视为异常值。基于低密度模型的方法能够有效地捕捉到这种局部密度的差异性。

常见的基于低密度模型的异常值检测方法

基于低密度模型的异常值检测方法种类繁多,以下列举几种代表性的方法:

  1. 局部异常因子 (Local Outlier Factor, LOF)

LOF是基于密度方法的经典代表。其核心思想是度量一个数据点与其邻域内数据点的局部密度偏差。具体而言,LOF通过计算每个数据点的局部可达密度(Local Reachability Density, LRD),并将其与其邻域点的局部可达密度进行比较来定义异常程度。

    LOF 的优点在于能够捕捉到不同密度分布下的异常值,并且能够给出每个数据点的异常程度得分。然而,LOF 对参数 k 的选择较为敏感,且在大规模数据集上计算复杂度较高。

    1. 基于连接性的异常因子 (Connectivity-Based Outlier Factor, COF)

    COF 是 LOF 的一个变体,旨在解决 LOF 在处理具有链状结构的数据集时可能存在的问题。COF 使用最短路径距离(或称为连接性距离)来替代欧氏距离,从而更好地反映数据点之间的连接性。

    • 连接性距离 (Connectivity Distance):

       COF 中使用 Minimum Spanning Tree (MST) 或类似的连接性结构来定义点之间的距离。点 p 到其 k-最近邻域的连接性距离是 MST 上 p 到其 k-最近邻中所有点的路径长度之和。

    • 平均连接性距离 (Average Connectivity Distance, ACD):

       点 p 的 ACD 是其到其 k-最近邻域中所有点的连接性距离的平均值。

    • 连接性异常因子 (Connectivity-Based Outlier Factor, COF):

       COF 的计算类似于 LOF,但将 LRD 替换为基于 ACD 的度量。

    COF 在某些特定类型的数据结构上表现优于 LOF,但其计算过程可能更复杂。

    1. 高斯混合模型 (Gaussian Mixture Model, GMM)

    GMM 是一种概率模型,用于表示服从多个高斯分布的数据的概率分布。在异常值检测中,GMM 可以用来拟合数据的整体分布。正常数据点往往位于 GMM 中某个高斯分量的中心或高概率区域,而异常数据点则位于低概率区域。

    异常值检测的基本步骤如下:

    • 使用 EM (Expectation-Maximization) 算法训练 GMM 模型,估计每个高斯分量的均值、协方差和权重。

    • 对于每个数据点,计算其在训练好的 GMM 模型下的概率密度值。

    • 设置一个阈值,低于该阈值的数据点被视为异常值。

    GMM 的优点在于能够建模复杂的数据分布,并提供数据点属于某个簇的概率信息。然而,GMM 的性能对模型参数(如高斯分量的数量)的选择较为敏感,并且在处理高维数据时可能面临维度灾难。

    1. 基于密度的聚类算法 (Density-Based Clustering)

    虽然基于密度的聚类算法(如 DBSCAN)本身并非直接用于计算异常值得分,但其核心思想——基于密度的连接性——可以用于识别异常值。DBSCAN 将数据点划分为核心点、边界点和噪声点。噪声点即为那些不属于任何簇的点,通常位于低密度区域,因此可以被视为异常值。

    • ε-邻域 (ε-neighborhood):

       对于一个数据点 p,其 ε-邻域是所有距离 p 小于或等于 ε 的数据点集合。

    • 最小点数 (MinPts):

       一个核心点必须在其 ε-邻域内至少包含 MinPts 个数据点(包括自身)。

    • 直接密度可达 (Directly Density-Reachable):

       如果数据点 q 在数据点 p 的 ε-邻域内,并且 p 是一个核心点,则 q 从 p 直接密度可达。

    DBSCAN 将所有密度连接的点归为一个簇。不属于任何簇的点则被标记为噪声点。这些噪声点通常是低密度区域的异常值。DBSCAN 的优点在于能够发现任意形状的簇,并且对噪声具有鲁棒性。然而,它对参数 ε 和 MinPts 的选择敏感。

    基于低密度模型方法的优缺点

    优点:

    • 能够发现不同形状的异常值:

       与基于距离的方法相比,基于密度的方法更能捕捉到不同密度分布下的异常值,例如在不同密度簇边缘或簇之间的区域。

    • 无需假设数据的整体分布:

       大多数基于密度的方法(如 LOF、DBSCAN)无需假设数据遵循特定的概率分布(如正态分布)。

    • 提供局部异常程度:

       LOF 等方法能够为每个数据点提供一个异常得分,便于对异常值进行排序和阈值设置。

    • 对噪声具有一定的鲁棒性:

       一些基于密度的方法(如 DBSCAN)能够将噪声点识别出来,而不会将其错误地归入某个簇。

    缺点:

    • 对参数选择敏感:

       大多数基于密度的方法需要用户指定参数,如邻域半径 ε、最小点数 MinPts 或邻域大小 k。这些参数的选择对检测结果影响很大,并且通常需要通过经验或交叉验证来确定。

    • 计算复杂度较高:

       在高维数据或大规模数据集上,计算点之间的距离和邻域信息可能导致较高的计算复杂度。

    • 在密度变化剧烈的数据集上表现可能受限:

       当数据集的整体密度变化非常剧烈时,基于局部密度比较的方法可能难以区分正常点和异常点。

    • 在极高维空间中可能面临挑战:

       在高维空间中,距离的度量变得困难,且数据变得稀疏,导致“维度灾难”,影响密度估计的准确性。

    基于低密度模型异常值检测的应用

    基于低密度模型的异常值检测方法在各个领域都有广泛的应用,例如:

    • 金融欺诈检测:

       检测信用卡交易、贷款申请等是否存在异常模式,可能指示欺诈行为。异常交易往往偏离正常用户的消费习惯,出现在低密度区域。

    • 网络入侵检测:

       识别网络流量中的异常行为,如DDOS攻击、端口扫描等。恶意行为通常与正常网络流量的模式存在显著差异,表现为低密度流量。

    • 工业设备故障诊断:

       监控工业设备的传感器数据,检测异常读数或模式,预测设备故障。异常数据可能指示设备部件的磨损或失效,位于正常运行数据的低密度区域。

    • 医疗健康监测:

       分析病人的生理数据(如心率、血压、血糖),检测异常波动,帮助医生进行诊断和治疗。异常生理指标通常偏离正常范围,位于低密度区域。

    • 异常生物序列检测:

       在基因组学、蛋白质组学等领域,检测异常的基因序列或蛋白质结构,可能指示疾病或变异。异常序列往往与正常序列的模式存在差异,位于低密度区域。

    • 图像和视频异常检测:

       检测图像或视频中与正常背景或行为模式不符的对象或事件。异常区域或行为通常在特征空间中表现为低密度。

    挑战与未来方向

    尽管基于低密度模型的异常值检测方法取得了显著进展,但仍面临一些挑战,未来的研究方向包括:

    • 参数的自动选择:

       开发自适应的参数选择方法,减少对人工经验的依赖,提高方法的鲁棒性。

    • 高维数据的处理:

       探索更有效的在高维空间中进行密度估计和异常值检测的方法,例如利用特征选择、降维技术或基于子空间的异常值检测方法。

    • 在线异常值检测:

       研究适用于流式数据的基于密度模型的异常值检测方法,能够在数据到达时实时检测异常。

    • 解释性与可解释性:

       提高异常值检测结果的解释性,不仅识别异常值,还能提供异常原因或特征的洞察。

    • 结合其他检测方法:

       将基于密度的方法与其他异常值检测方法(如基于距离、基于模型或基于集成学习的方法)相结合,构建更强大和鲁棒的异常值检测系统。

    • 处理概念漂移:

       随着时间的推移,正常数据的分布可能发生变化(概念漂移)。研究如何在概念漂移的情况下有效地进行基于密度模型的异常值检测。

    结论

    基于低密度模型的异常值检测方法是异常值检测领域中的重要组成部分。这类方法通过度量数据点的局部密度并与周围点的密度进行比较,能够有效地识别出偏离正常模式的孤立点。LOF、COF、GMM以及基于密度的聚类方法是典型的基于低密度模型的异常值检测技术,各自具有优缺点和适用场景。尽管面临参数选择、高维处理等挑战,基于低密度模型的方法在金融、网络安全、医疗健康等多个领域展现出强大的应用潜力。未来的研究将致力于解决现有挑战,提高方法的自动化程度、在高维空间中的性能以及与其他方法的融合,从而进一步推动异常值检测技术的发展。在实际应用中,应根据具体数据特性、业务需求和可用的计算资源,选择合适的基于低密度模型的异常值检测方法或结合多种方法进行异常值分析。

    ⛳️ 运行结果

    🔗 参考文献

    [1] 乐立利.观测数据的异常值统计检验方法研究[D].中南大学,2008.DOI:10.7666/d.y1536243.

    [2] 缑百勇,陆秋海,王波,等.利用固有频率异常值分析法检测螺栓拧紧力[J].振动与冲击, 2015, 34(23):6.DOI:10.13465/j.cnki.jvs.2015.23.014.

    [3] 王囡,刘琦.基于异常值检验的Bayesian方法验前信息可信度计算[J].科学技术与工程, 2012.DOI:CNKI:SUN:KXJS.0.2012-31-011.

    📣 部分代码

    🎈 部分理论引用网络文献,若有侵权联系博主删除

     👇 关注我领取海量matlab电子书和数学建模资料 

    🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

    🌈 各类智能优化算法改进及应用
    生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
    🌈 机器学习和深度学习时序、回归、分类、聚类和降维

    2.1 bp时序、回归预测和分类

    2.2 ENS声神经网络时序、回归预测和分类

    2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

    2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

    2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
    2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

    2.7 ELMAN递归神经网络时序、回归\预测和分类

    2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

    2.9 RBF径向基神经网络时序、回归预测和分类

    2.10 DBN深度置信网络时序、回归预测和分类
    2.11 FNN模糊神经网络时序、回归预测
    2.12 RF随机森林时序、回归预测和分类
    2.13 BLS宽度学习时序、回归预测和分类
    2.14 PNN脉冲神经网络分类
    2.15 模糊小波神经网络预测和分类
    2.16 时序、回归预测和分类
    2.17 时序、回归预测预测和分类
    2.18 XGBOOST集成学习时序、回归预测预测和分类
    2.19 Transform各类组合时序、回归预测预测和分类
    方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
    🌈图像处理方面
    图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
    🌈 路径规划方面
    旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
    🌈 无人机应用方面
    无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
    🌈 通信方面
    传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
    🌈 信号处理方面
    信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
    🌈电力系统方面
    微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
    🌈 元胞自动机方面
    交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
    🌈 雷达方面
    卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
    🌈 车间调度
    零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

    👇

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值