【直接序列扩频(DSSS)16QAM发射机和接收机】使用16QAM和伪随机序列实现数据包的发送和接收:一是对应使用加性高斯白噪声(AWGN)信道的系统,另一个是使用瑞利信道和rake接收研究Matla

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

直接序列扩频(Direct Sequence Spread Spectrum, DSSS)作为一种重要的扩频技术,通过将信息信号与高速率的伪随机(Pseudo-random, PN)序列进行乘法运算,将信号频谱展宽到远大于信息带宽的范围,从而实现抗干扰、抗截获和多址接入等优势。随着无线通信技术的发展,对更高数据传输速率的需求日益增长,而高阶调制方式(如16QAM)的应用成为必然趋势。本文深入研究了基于16QAM调制和伪随机序列的DSSS系统,并针对两种典型信道环境——加性高斯白噪声(Additive White Gaussian Noise, AWGN)信道和瑞利衰落(Rayleigh Fading)信道,分别设计了对应的发射机和接收机系统。在AWGN信道下,系统主要面对热噪声的干扰,接收机设计着重于同步和解扩后的信号检测。而在瑞利信道下,信号会经历多径衰落,接收机需要采用如Rake接收机等技术来有效合并多径分量,从而提升系统性能。本文将详细阐述基于16QAM的DSSS发射机和接收机的设计原理、关键技术以及在两种信道环境下的性能分析,旨在为相关领域的研究和工程实践提供参考。

关键词:直接序列扩频(DSSS)、16QAM、伪随机序列、AWGN信道、瑞利信道、Rake接收机、多径衰落

1. 引言

无线通信技术的快速发展对数据传输速率提出了更高的要求。为了满足这一需求,工程师们不断探索更先进的调制解调技术和抗干扰技术。直接序列扩频(DSSS)技术凭借其固有的抗干扰、抗窄带干扰以及在多址通信中的优势,在军事通信、全球定位系统(GPS)以及部分无线局域网标准中得到了广泛应用。传统的DSSS系统多采用BPSK或QPSK等低阶调制方式,虽然抗干扰能力强,但在频谱效率方面存在不足。为了提高频谱效率,将高阶调制方式与DSSS技术相结合成为一种重要的发展方向。16QAM作为一种高阶调制方式,能够在有限的带宽内传输更多的数据,与DSSS技术结合可以实现高带宽利用率和良好的抗干扰性能的有机统一。

本文的研究重点是基于16QAM调制和伪随机序列的DSSS系统,并在两种具有代表性的无线信道——AWGN信道和瑞利衰落信道下对其性能进行研究。AWGN信道是最理想化的信道模型,只考虑了接收端的加性热噪声,是衡量系统基本性能的基准。而瑞利衰落信道则更贴近实际的无线环境,反映了信号在传播过程中由于多径效应引起的幅度衰落和相位旋转,是无线通信系统设计中必须面对的挑战。针对瑞利信道的多径衰落特性,引入Rake接收机技术,通过有效地合并来自不同路径的信号能量,可以显著提高接收机的性能。

本文将首先介绍基于16QAM的DSSS发射机和接收机的基本架构,然后分别针对AWGN信道和瑞利信道下的系统进行详细设计和分析。具体而言,本文将:

  • 设计基于16QAM调制和伪随机序列的DSSS发射机,包括信源编码、16QAM调制、扩频、滤波等模块。

  • 设计在AWGN信道下工作的DSSS接收机,重点关注同步(捕获和跟踪)和解扩后的信号检测。

  • 设计在瑞利衰落信道下工作的DSSS接收机,重点阐述Rake接收机的原理和实现,以及多径分量的合并技术。

  • 分析在两种信道环境下,系统的误码率(BER)性能与信噪比(SNR)之间的关系。

2. 基于16QAM的DSSS发射机设计

  • 信源数据

    : 原始的数字比特流。

  • 信源编码

    : 根据需要,可以采用信源编码技术,如压缩编码,以去除数据中的冗余,提高信息传输效率。

  • 16QAM调制

    : 将输入的二进制比特流映射为16QAM星座图上的复数符号。16QAM通过改变载波的幅度和相位来表示不同的信息,每16QAM符号可以携带4个比特信息(2^4 = 16)。映射规则可以采用格雷码映射,以减小误码率。

图片

  • 脉冲成形滤波

    : 为了限制信号的带宽,减少符号间干扰(ISI),在扩频后对信号进行脉冲成形滤波。常用的滤波器包括升余弦滚降滤波器。滤波器的输出是基带扩频信号。

  • 上变频

    : 将基带扩频信号搬移到射频(RF)载波频率上,以便通过天线发射。这通常通过混频器和本地振荡器实现。

  • 发射天线

    : 将射频信号辐射到空中。

3. 基于16QAM的DSSS接收机设计

基于16QAM的DSSS接收机的设计根据信道环境的不同而有所差异。本文分别讨论在AWGN信道和瑞利衰落信道下的接收机设计。

3.1 AWGN信道下的DSSS接收机

在AWGN信道下,接收到的信号主要由发射信号和加性高斯白噪声组成。接收机的主要任务是完成下变频、滤波、同步、解扩和解调。

  • 接收天线

    : 接收来自空中的射频信号。

  • 下变频

    : 将接收到的射频信号搬移到中频(IF)或基带。

  • 带通滤波

    : 滤除带外噪声和干扰。滤波器的带宽应与扩频信号的带宽相匹配。

  • 自动增益控制(AGC)

    : 调整接收信号的幅度,以保证后续处理电路在最佳工作范围内。

  • 同步模块

    : 这是DSSS接收机中最关键的部分。同步包括码捕获(Code Acquisition)和码跟踪(Code Tracking)。

    • 码捕获

      : 确定接收到的PN序列的起始位置,即找到接收到的PN序列与本地产生的PN序列之间的延时。常用的捕获方法包括滑动相关法、匹配滤波器法等。

    • 码跟踪

      : 一旦捕获到码相位,码跟踪模块会精确跟踪码相位,补偿由于多普勒效应或时钟漂移引起的码相位变化。常用的跟踪环路包括延迟锁定环(DLL)等。

图片

  • 脉冲成形匹配滤波

    : 对解扩后的信号进行匹配滤波,以最大化信号的信噪比,并抑制码间干扰。匹配滤波器的特性应与发射端的脉冲成形滤波器相匹配。

  • 采样判决

    : 在最佳采样时刻对匹配滤波器的输出进行采样,并根据采样值判决出对应的16QAM符号。

  • 16QAM解调

    : 将判决出的16QAM符号映射回二进制比特流。

  • 信源译码

    : 如果发射端进行了信源编码,则在接收端进行相应的信源译码。

  • 输出数据

    : 恢复的原始数字比特流。

3.2 瑞利信道下的DSSS接收机:Rake接收机研究

在瑞利衰落信道下,由于信号在传播过程中会经历反射、散射等多种路径,导致接收端收到多个具有不同延时、幅度和相位的信号副本,即多径效应。瑞利衰落模型通常用于描述没有主导直射径的无线环境下的信号衰落。多径效应会导致信号的失真和功率损失,严重影响通信系统的性能。传统的单径接收机无法有效应对多径效应。Rake接收机是一种专门用于对抗多径衰落的接收机结构,它能够识别并合并来自不同路径的信号分量,从而有效地利用多径能量,提高接收机的性能。

相比于AWGN信道下的接收机,瑞利信道下的接收机增加了多径估计和Rake接收机模块。

图片

  • 脉冲成形匹配滤波

    : 对合并后的信号进行匹配滤波。

  • 后续模块

    : 采样判决、16QAM解调、信源译码和输出数据与AWGN信道下的接收机类似。

4. 性能分析

系统的性能通常用误码率(BER)来衡量,即错误接收的比特数占总传输比特数的比例。在AWGN信道和瑞利信道下,基于16QAM的DSSS系统的BER性能与信噪比(SNR)密切相关。

4.1 AWGN信道下的性能

在理想的AWGN信道下,DSSS系统的主要性能限制来自于热噪声。对于16QAM调制,理论上在AWGN信道下的误码率性能可以通过公式推导得到。扩频技术本身并不会改变单用户在理想AWGN信道下的误码率性能(在忽略多址干扰和窄带干扰的情况下),其主要作用是抗干扰。因此,在AWGN信道下,基于16QAM的DSSS系统的误码率性能主要取决于16QAM调制方式本身的性能。

通过仿真,可以验证在不同的信噪比下,系统的误码率性能。仿真结果通常会绘制成误码率-信噪比曲线,与理论曲线进行比较。在AWGN信道下,随着信噪比的增加,误码率呈指数级下降。

4.2 瑞利信道下的性能

在瑞利衰落信道下,多径衰落是影响系统性能的主要因素。如果不采用Rake接收机或其他分集技术,系统的误码率会显著恶化,并且在信噪比很高的情况下也难以达到很低的误码率,出现“错误平层”。

引入Rake接收机后,通过合并多径分量,可以有效地对抗衰落。Rake接收机的性能取决于多个因素,包括:

  • 多径数量

    : 可辨识的多径数量越多,Rake接收机能够合并的能量越多,性能提升越明显。

  • 合并技术

    : MRC通常能够获得最佳的性能,而EGC性能次之。

  • 多径估计的精度

    : 多径估计的误差会影响指路的对齐和加权,从而影响合并效果。

  • 同步精度

    : 码跟踪误差会导致解扩不完全,降低信号幅度。

通过仿真,可以比较在不同指路数量、不同合并技术下,Rake接收机在瑞利信道下的误码率性能。仿真结果通常显示,随着指路数量的增加,误码率性能得到改善,误码率曲线会向左下方移动。与没有Rake接收机的系统相比,Rake接收机能够显著降低错误平层,在高信噪比下取得更低的误码率。

5. 仿真实现与结果分析

为了验证本文提出的基于16QAM的DSSS系统在两种信道下的性能,可以采用MATLAB、Simulink或其他通信系统仿真工具进行仿真。仿真流程通常包括:

  • 信源数据生成

    : 生成随机的二进制比特流。

  • 发射机模拟

    : 模拟图1所示的发射机模块,包括信源编码、16QAM调制、扩频、脉冲成形滤波和上变频。

  • 信道建模

    : 根据AWGN信道或瑞利信道模型,对发射信号加入相应的噪声或进行多径衰落模拟。瑞利信道建模需要考虑多径的延时、幅度和相位衰落,以及多普勒频移(如果考虑移动性)。

  • 接收机模拟

    : 模拟图2或图3所示的接收机模块,包括下变频、滤波、同步、解扩/Rake接收机、匹配滤波、采样判决、16QAM解调和信源译码。

    • 对于AWGN信道,重点模拟同步模块的性能。

    • 对于瑞利信道,重点模拟多径估计、针对各路径的同步以及Rake接收机的多指路解扩和合并过程。

  • 误码率计算

    : 比较接收到的比特流与原始的比特流,计算误码率。

  • 性能曲线绘制

    : 在不同信噪比下重复仿真,绘制误码率-信噪比曲线。

通过仿真结果,可以直观地比较在AWGN信道下和瑞利信道下系统的性能差异,以及Rake接收机在瑞利信道下的性能提升效果。仿真结果应符合理论分析的趋势。例如,在AWGN信道下,误码率随着信噪比的增加而迅速下降。在瑞利信道下,如果没有Rake接收机,误码率在高信噪比下会趋于平稳。而采用Rake接收机后,错误平层会降低,误码率在高信噪比下能够继续下降。

6. 结论

本文详细研究了基于16QAM调制和伪随机序列的直接序列扩频系统,并分别设计了在AWGN信道和瑞利衰落信道下工作的发射机和接收机。通过对两种信道环境下接收机关键技术的研究,特别是瑞利信道下Rake接收机的原理和实现,揭示了不同信道环境对DSSS系统性能的影响以及相应的应对策略。

研究表明,在AWGN信道下,基于16QAM的DSSS系统能够有效抵抗热噪声,其性能主要取决于16QAM本身的调制解调性能。而在瑞利衰落信道下,多径衰落是主要的挑战,如果不采取措施,系统性能会严重恶化并出现错误平层。引入Rake接收机能够有效地合并多径能量,显著提升系统在瑞利信道下的误码率性能,降低错误平层。指路数量、合并技术以及多径估计精度是影响Rake接收机性能的关键因素。

⛳️ 运行结果

图片

图片

图片

图片

🔗 参考文献

[1] 张琛,付耀文,张尔扬.降低16QAM-OFDM信号峰均功率比的方法研究[J].电视技术, 2006(10):4.DOI:10.3969/j.issn.1002-8692.2006.10.005.

[2] 占锦敏,赵知劲,王李军.基于随机森林的通信信号识别算法[J].杭州电子科技大学学报, 2020(005):040.

[3] 杨旭涛.直接序列扩频信号的检测和参数估计[D].西安电子科技大学,2007.DOI:CNKI:CDMD:2.2006.055396.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值