✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
齿轮系统作为工业领域中广泛应用的动力传递装置,其可靠性直接影响着整个设备的运行性能和安全。然而,由于长时间运行、高负载、恶劣工况等因素的影响,齿轮系统极易发生故障,如齿面磨损、断齿、轴承损坏等。这些故障不仅会导致设备停机,造成巨大的经济损失,还可能引发更严重的事故。因此,对齿轮系统进行有效的故障诊断和跟踪显得尤为重要。
传统的故障诊断方法,如振动分析、声发射分析、润滑油分析等,能够在一定程度上识别故障的存在和类型。然而,这些方法往往难以精确定位故障源,特别是在复杂的齿轮箱内部,多个部件(如齿轮、轴承、联轴器等)的振动信号相互叠加,使得故障跟踪变得困难。为了克服这一难题,研究人员们一直在探索更有效的故障定位和跟踪技术。
传递路径分析(Transfer Path Analysis, TPA)作为一种重要的系统动力学分析方法,通过测量激励源、响应点以及它们之间的传递路径特性,可以定量地评估不同激励源对响应点的贡献,从而有效地识别和分离各种噪声或振动源。尽管TPA方法在噪声与振动控制领域有着广泛的应用,但将其应用于复杂齿轮系统的故障跟踪方面,尤其是基于现场测量的实时或准实时跟踪,仍然面临诸多挑战。本文旨在探讨一种基于现场测量的传递路径分析方法,用于齿轮系统的故障跟踪,并对其可行性、挑战以及潜在的应用前景进行深入讨论。
文献综述
齿轮系统故障诊断与传递路径分析是两个独立但相互关联的研究领域。在齿轮系统故障诊断方面,大量的研究集中在信号处理技术上,如小波变换、经验模态分解(EMD)、基于深度学习的特征提取等,这些方法旨在从复杂的振动或声发射信号中提取与故障相关的特征。然而,这些方法通常只能识别故障的类型和严重程度,而难以精确确定故障发生的具体位置。
另一方面,传递路径分析方法在结构声学和振动领域有着悠久的历史。传统的TPA方法主要用于评估不同激励源对结构响应的贡献,例如发动机噪声对车厢内部噪声的贡献。这些方法通常需要进行受控的激励实验,并测量大量的频响函数(FRF)。然而,对于运行中的齿轮系统,进行受控的激励实验通常是不现实的。因此,发展基于运行数据的TPA方法成为了一个重要的研究方向。
近年来,一些研究尝试将TPA方法应用于旋转机械的故障诊断。例如,通过测量轴承座的振动以及轴承内部的振动,利用TPA方法评估轴承故障对外部振动的贡献。然而,将TPA方法直接应用于复杂的齿轮箱内部,由于其结构复杂、空间有限以及多个故障源同时存在等因素,仍然存在 significant 挑战。此外,基于现场测量的TPA方法,特别是需要实时或准实时跟踪故障源的方法,对测量技术、数据处理算法以及计算效率提出了更高的要求。
基于现场测量的传递路径分析方法原理
本文提出的基于现场测量的传递路径分析方法,旨在通过分析齿轮系统在正常和故障状态下的振动数据,结合系统的传递路径特性,实现对故障源的定位和跟踪。其基本原理可以概括如下:
-
系统建模与传递路径定义: 将齿轮系统视为一个多输入多输出的系统。激励源可以包括齿轮啮合力、轴承滚子通过频率激励力、轴承内外套圈缺陷引起的激励力等。响应点通常是易于安装传感器的位置,例如齿轮箱外部壳体上的测点。传递路径则是从各个激励源到响应点的动态特性。
-
现场振动测量: 在齿轮系统运行过程中,通过在响应点安装加速度传感器或其他振动传感器,采集系统的振动响应信号。为了获取更全面的信息,可以在多个响应点进行测量。
-
激励源信号估计(或假设): 对于运行中的系统,直接测量内部激励源信号通常是困难的。因此,需要采用一些方法来估计或假设激励源信号。例如,对于齿轮啮合故障,可以基于齿轮的几何参数和转速来估计啮合频率及其倍频处的激励。对于轴承故障,可以基于轴承的结构参数和转速来估计缺陷引起的特征频率。或者,可以采用一些信号分解技术,如盲源分离(BSS)或独立分量分析(ICA),试图从混合的响应信号中分离出潜在的激励源信号。
-
传递路径特性估计: 在理想情况下,可以通过受控实验测量系统的传递路径特性(即频响函数)。然而,在现场测量中,往往难以进行受控实验。因此,需要发展基于运行数据的传递路径估计方法。一种可能的方法是利用系统在正常运行状态下采集的数据来估计传递路径。假设在正常状态下,系统的激励源是已知的(例如,主要是齿轮啮合力),则可以通过测量响应信号和估计的激励信号来估计传递路径。另一种方法是利用系统辨识技术,从输入(估计的激励)和输出(响应)数据中估计系统的传递函数。
-
故障激励贡献评估: 一旦获得了响应信号、激励源信号(估计或假设)以及传递路径特性,就可以利用TPA方法来评估不同激励源对响应点的贡献。对于线性系统,响应信号可以表示为各个激励源信号与对应传递路径特性的卷积(在时域)或乘积(在频域)。通过对响应信号进行分解,可以定量地评估各个激励源对总响应的贡献。
-
故障源定位与跟踪: 通过比较在正常状态下和故障状态下不同激励源对响应点的贡献,可以识别出发生变化的激励源,从而推断出故障的类型和位置。例如,如果发现与某一特定齿轮相关的激励源贡献显著增加,则可能表明该齿轮发生了故障。通过监测不同激励源贡献随时间的变化,可以实现对故障的跟踪,评估故障的严重程度和发展趋势。
挑战与解决方案
将基于现场测量的TPA方法应用于齿轮系统故障跟踪面临诸多挑战:
- 激励源信号的准确获取:
运行中的齿轮箱内部空间有限,难以安装传感器直接测量内部激励源信号。激励源的性质复杂,可能包括冲击、摩擦、磨损等多种形式。
- 潜在解决方案:
结合信号处理技术,从响应信号中估计激励源特征。利用先验知识,如齿轮啮合频率、轴承故障特征频率等,辅助激励源的识别和估计。发展非接触式测量技术,如激光测振或红外热成像,尝试获取内部状态信息。
- 潜在解决方案:
- 传递路径特性的准确估计:
齿轮系统的传递路径受温度、载荷、润滑状态等多种因素影响,且可能存在非线性特性。在现场测量中难以进行受控实验,基于运行数据的传递路径估计具有挑战性。
- 潜在解决方案:
在不同工况下测量传递路径,并建立参数模型,考虑其随工况的变化。利用先进的系统辨识算法,从运行数据中更准确地估计传递路径。考虑利用数据驱动的方法,直接建立激励与响应之间的映射关系。
- 潜在解决方案:
- 多故障源的干扰:
在复杂的齿轮箱中,可能同时存在多个故障源,它们的信号相互叠加,使得故障源的识别和分离变得困难。
- 潜在解决方案:
结合信号处理技术,如盲源分离或独立分量分析,尝试分离不同的故障源信号。利用传感器阵列技术,通过空间滤波等方法,增强对特定故障源信号的接收能力。
- 潜在解决方案:
- 计算效率与实时性:
为了实现故障的实时或准实时跟踪,需要高效的数据处理算法和强大的计算能力。现场环境可能对设备的计算能力提出限制。
- 潜在解决方案:
优化数据处理算法,减少计算量。利用边缘计算或云计算资源,提高计算效率。发展基于机器学习或深度学习的快速故障诊断模型,直接从测量数据中预测故障类型和位置。
- 潜在解决方案:
- 非线性问题:
齿轮系统在某些工况下可能表现出明显的非线性特性,这给基于线性假设的TPA方法带来了挑战。
- 潜在解决方案:
发展适用于非线性系统的TPA方法,例如基于Volterra级数或Hammerstein-Wiener模型的非线性传递路径分析。或者,将系统分解为多个近似线性的子系统,分别进行分析。
- 潜在解决方案:
应用前景与展望
基于现场测量的传递路径分析方法在齿轮系统故障跟踪方面具有广阔的应用前景:
- 早期故障预警与定位:
通过持续监测不同激励源的贡献,可以及时发现异常信号,实现早期故障预警。结合传递路径信息,可以初步定位故障发生的区域或部件。
- 故障严重程度评估与发展趋势预测:
故障激励贡献的定量评估可以反映故障的严重程度。通过对贡献随时间的变化进行跟踪,可以预测故障的发展趋势,为设备的维护和修理提供决策依据。
- 故障类型识别:
不同类型的故障(如齿面磨损、断齿、轴承故障等)通常对应着不同的激励源信号和传递路径特性。通过分析激励源的特征及其对响应的贡献,可以辅助识别故障类型。
- 维护优化与成本降低:
精确的故障定位和严重程度评估有助于实现基于状态的维护(CBM),避免不必要的停机和维修,降低维护成本,提高设备的运行效率。
- 产品改进与设计优化:
通过对故障模式和激励源的分析,可以为齿轮系统的设计改进提供反馈,提高产品的可靠性和使用寿命。
未来的研究方向可以集中在以下几个方面:
- 基于数据驱动的激励源识别和传递路径估计方法:
发展更先进的机器学习和深度学习算法,从复杂的现场测量数据中自动识别和分离激励源,并估计传递路径。
- 非线性传递路径分析方法的应用研究:
针对齿轮系统的非线性特性,发展和应用更适用于非线性系统的TPA方法。
- 多传感器信息融合技术:
结合振动、声发射、温度、电流等多种传感器信息,提高故障诊断和跟踪的准确性和鲁棒性。
- 边缘计算与云计算在现场测量TPA中的应用:
利用边缘计算或云计算资源,实现高效的数据处理和实时故障跟踪。
- 基于数字孪生的故障跟踪系统:
结合数字孪生技术,建立齿轮系统的虚拟模型,利用现场测量数据对虚拟模型进行更新和验证,实现更准确的故障预测和跟踪。
结论
齿轮系统故障跟踪是保障设备可靠运行的关键环节。传统的故障诊断方法在定位故障源方面存在不足。本文提出了一种基于现场测量的传递路径分析方法,旨在通过分析系统在运行状态下的振动数据,结合传递路径特性,实现对故障源的定位和跟踪。尽管该方法面临激励源获取、传递路径估计、多故障源干扰等诸多挑战,但通过结合先进的信号处理技术、系统辨识方法以及机器学习算法,这些挑战有望得到克服。基于现场测量的TPA方法在齿轮系统故障的早期预警、严重程度评估、发展趋势预测以及维护优化方面具有广阔的应用前景。未来的研究应进一步深入探索数据驱动的方法、非线性TPA方法以及多传感器信息融合技术,以提高故障跟踪的准确性和实时性,为保障工业设备的稳定运行提供有力支持。
⛳️ 运行结果
🔗 参考文献
[1] 朱自未.基于OTPA方法的高速列车噪声车体传递路径分析[D].西南交通大学[2025-05-15].
[2] 龙岩,范让林,史文库,等.提高传递路径分析速度和精度的方法[J].吉林大学学报:工学版, 2009(S1):5.DOI:CNKI:SUN:JLGY.0.2009-S1-016.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇