水下机器人双机械手系统动态建模与控制仿真附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在海洋探索、资源开发和军事应用等领域,水下机器人正扮演着越来越重要的角色。尤其是在需要执行复杂水下操作任务时,配备机械手的多关节水下机器人因其灵活性和作业能力,成为当前的研究热点。传统的单机械手水下机器人虽能完成一定任务,但在需要协同作业、搬运重物或精细操作时,双机械手系统展现出显著优势。双机械手系统不仅能够提高作业效率和可靠性,还能通过协调控制实现更复杂的任务。然而,双机械手水下机器人系统的动力学特性极为复杂,受多种因素影响,如机器人本体与机械手的耦合动力学、水动力效应(包括附加质量、阻力、浮力等)、以及双机械手之间的相互作用等。精确的动态建模是实现高精度、高鲁棒性控制的基础,而有效的控制策略则是确保系统稳定可靠运行的关键。因此,对水下机器人双机械手系统进行深入的动态建模与控制仿真研究具有重要的理论意义和实际应用价值。

本文旨在对水下机器人双机械手系统的动态建模方法进行探讨,并在此基础上研究其控制策略,并通过仿真验证所提方法的有效性。文章将首先对系统的动力学特性进行分析,重点阐述水动力对系统的影响;接着,将详细介绍双机械手水下机器人系统的动力学建模方法,包括机器人本体与机械手的耦合动力学建模;然后,将探讨适用于双机械手系统的控制策略,并重点关注协调控制问题;最后,将通过仿真实验对所建立的动态模型和设计的控制策略进行验证与分析。

1. 水下机器人双机械手系统动力学特性分析

水下环境的特殊性赋予了水下机器人独特的动力学特性。相较于陆地机器人,水下机器人系统除了自身的惯性动力学外,还需要考虑复杂的水动力效应。对于配备双机械手的系统,这些效应的影响更加显著。

1.1 耦合动力学效应

水下机器人本体与双机械手之间的耦合动力学是系统动力学建模的关键。机械手的运动会产生反作用力矩和力,作用于机器人本体,引起本体的姿态和位置变化。同时,本体的运动也会影响机械手的运动轨迹和受力。这种双向耦合作用使得系统的动力学方程变得复杂。尤其是当机械手执行大幅度或高速运动时,其对本体的影响会更为剧烈。对于双机械手系统而言,除了机械手与本体的耦合,两只机械手之间的运动也可能产生相互影响,进一步增加了耦合的复杂性。

1.2 水动力效应

水动力是水下机器人系统动力学中不可忽视的关键因素。主要包括以下几个方面:

  • 附加质量(Added Mass):

     当物体在水中运动时,会带动周围的水一起运动,表现为物体的惯性增加。这种增加的惯性即为附加质量效应。对于形状复杂的水下机器人本体和多关节机械手而言,附加质量的计算通常依赖于经验公式或数值模拟方法。关节运动会改变机械手的形状,进而影响附加质量的分布和大小,使得附加质量成为一个随时间变化的量。

  • 水动力阻力(Hydrodynamic Drag):

     物体在水中运动时会受到水的阻力作用,阻力的大小与物体的形状、运动速度以及流体性质有关。水动力阻力通常被建模为与速度平方成正比的项。对于双机械手系统,本体和机械手的各个连杆都会受到水动力阻力,且阻力方向与运动方向相反。

  • 浮力(Buoyancy):

     浮力是由于物体排开流体而受到的向上作用力。对于水下机器人系统,浮力的大小取决于其体积和水的密度。浮力是影响系统静态平衡和垂直运动的重要因素。

  • 升力(Lift):

     当物体在水中运动时,如果其形状不对称或存在攻角,可能会产生与运动方向垂直的升力。在某些情况下,升力也需要被考虑。

水动力效应的非线性和复杂性使得水下机器人系统的动力学建模更具挑战性。精确地描述水动力对于实现高精度控制至关重要。

1.3 双机械手之间的相互作用

双机械手系统在执行协同任务时,两只机械手之间会产生相互作用。例如,在共同抓取同一物体时,两只机械手需要协同配合,共同承受物体的重量和水动力。此外,如果两只机械手运动轨迹靠近,还可能产生水动力上的相互影响,如尾流效应。这些相互作用都会影响系统的动力学行为。

2. 水下机器人双机械手系统动态建模

精确的动力学模型是设计有效控制器的前提。对于水下机器人双机械手系统,常用的动力学建模方法包括牛顿-欧拉法和拉格朗日法。考虑到系统的复杂性,拉格朗日法通常更适用于推导其动力学方程。

2.1 系统概览

水下机器人双机械手系统可以被抽象为一个具有多个自由度的串并联多体系统。通常,水下机器人本体被视为一个六自由度的刚体(三个位置自由度:前/后、左/右、上/下;三个姿态自由度:横摇、纵摇、首摇)。每个机械手则由多个通过旋转或平移关节连接的连杆组成。双机械手通过基座连接到水下机器人本体上。

2.2 基于拉格朗日法的动力学建模

基于拉格朗日法的动力学建模过程如下:

在实际建模过程中,精确计算附加质量矩阵和水动力阻力矩阵是难点。通常需要结合流体力学知识和数值模拟方法(如边界元法、计算流体动力学CFD)来近似计算。简化模型如忽略机械手连杆之间的水动力相互作用,或采用简单的线性阻力模型,虽然会牺牲精度,但能简化控制器设计。

2.3 机械手与本体的耦合建模

2.4 水动力建模的考虑

水动力建模的精度直接影响模型的准确性。常用的水动力建模方法包括:

  • 经验公式法:

     基于经验数据和简化模型(如圆柱体、球体)来估计附加质量和阻力系数。这种方法简单快捷,但精度较低。

  • 势流理论法:

     假设流体无粘无旋,通过求解拉普拉斯方程来计算附加质量。这种方法适用于简单的几何形状,但忽略了粘性效应。

  • 粘性流体力学方法(CFD):

     通过数值模拟求解纳维-斯托克斯方程来计算水动力。这种方法精度较高,但计算量大。

  • 系统辨识法:

     通过实验数据辨识水动力参数。这种方法可以获得更符合实际的水动力模型,但需要大量的实验数据。

在实际建模中,通常会结合多种方法,根据对模型精度的要求和计算资源的限制进行选择。对于复杂的双机械手系统,附加质量矩阵通常是满秩的,反映了各个自由度之间的相互耦合。

3. 水下机器人双机械手系统控制仿真

基于建立的动力学模型,可以设计和仿真适用于双机械手系统的控制策略。双机械手系统的控制目标通常包括机器人本体的定位与姿态控制,以及双机械手末端的轨迹跟踪、力控制或协同作业控制。

3.1 控制策略设计

对于水下机器人双机械手系统,常用的控制策略包括:

  • 关节空间控制:

     直接控制机械手各个关节的运动,适用于简单的点到点运动或轨迹跟踪。

  • 任务空间控制:

     控制机械手末端的位姿或受力,更符合实际作业需求。对于双机械手系统,任务空间控制通常需要考虑两只机械手末端的相对位姿或协同力。

  • 反馈线性化控制:

     通过非线性反馈将系统转化为线性系统,然后应用线性控制方法。这种方法可以实现对系统的精确控制,但需要精确的动力学模型。

  • 滑模控制:

     一种鲁棒性较强的非线性控制方法,适用于存在模型不确定性和外部干扰的系统。

  • 自适应控制:

     通过在线估计模型参数或不确定性,调整控制器参数,提高系统的鲁棒性。

  • 基于学习的控制:

     利用机器学习方法(如神经网络、强化学习)学习系统的动力学特性或最优控制策略。

  • 协调控制:

     针对双机械手协同作业任务,设计控制器协调两只机械手的运动和受力,实现共同目标。

3.2 协调控制问题

双机械手系统的协调控制是其核心难点之一。根据任务需求,协调控制可以分为以下几种类型:

  • 相对位姿控制:

     控制两只机械手末端之间的相对位置和姿态,适用于协同抓取同一物体或进行组装任务。

  • 力/位姿混合控制:

     控制一只机械手末端的位姿,同时控制另一只机械手末端与环境之间的相互作用力,适用于协同搬运物体并在特定位置放置。

  • 同步控制:

     控制两只机械手末端的运动同步进行,适用于协同切割、焊接等任务。

  • 负载分担控制:

     在协同抓取重物时,控制两只机械手合理分担负载,避免单个机械手过载。

协调控制策略的设计通常需要建立任务空间模型,描述两只机械手末端之间的相对关系和与环境的相互作用。常用的协调控制方法包括:

  • 主从控制:

     将其中一只机械手设为主臂,跟踪期望轨迹,另一只机械手设为从臂,根据主臂的运动进行调整,保持相对位姿或协同力。

  • 基于力/位姿解耦的控制:

     将系统的任务空间自由度分解为协调自由度(描述两臂之间的相对关系)和非协调自由度(描述两臂整体的运动),分别设计相应的控制器。

  • 基于优化理论的控制:

     将协调控制问题转化为优化问题,通过最小化某种代价函数来求解最优控制输入。

3.3 仿真平台的构建

为了验证所建立的动态模型和设计的控制策略,需要构建仿真平台。仿真平台应能够模拟水下环境、机器人本体、双机械手的动力学以及水动力效应。常用的仿真软件包括 MATLAB/Simulink、Gazebo、V-REP(CoppeliaSim)等。在仿真平台中,可以将建立的动力学模型作为核心模块,输入控制指令,输出系统的运动状态和受力信息。通过改变控制参数和环境条件,可以对控制策略的性能进行评估和优化。

3.4 仿真实验设计与结果分析

仿真实验是验证建模和控制方法有效性的重要手段。典型的仿真实验设计可以包括:

  • 单一机械手轨迹跟踪实验:

     在固定本体姿态下,测试单只机械手末端的轨迹跟踪性能,评估机械手动力学模型的准确性和关节空间控制器的有效性。

  • 本体姿态控制实验:

     在机械手固定或进行简单运动时,测试机器人本体的姿态保持和姿态调整能力,评估本体动力学模型的准确性和本体控制器的性能。

  • 双机械手协同轨迹跟踪实验:

     设计双臂协同完成特定轨迹跟踪任务,评估协调控制策略的有效性,如协同抓取、协同搬运等。

  • 水动力影响分析实验:

     在有无水动力模型或采用不同水动力模型的情况下进行仿真,对比系统的运动响应,量化水动力对系统性能的影响。

  • 抗干扰能力测试:

     在仿真中引入外部干扰(如水流、本体姿态扰动),测试控制策略的鲁棒性。

仿真结果应通过图表和数据进行详细分析,包括轨迹跟踪误差、关节力矩、本体姿态变化、协同力等,以评估控制策略的性能,并与理论分析进行对比。

4. 结论与展望

本文对水下机器人双机械手系统的动态建模与控制仿真进行了探讨。详细分析了系统的复杂动力学特性,包括耦合动力学和水动力效应,并阐述了基于拉格朗日法的动力学建模过程。同时,讨论了适用于双机械手系统的控制策略,重点关注了协调控制问题。通过仿真平台的构建和仿真实验,可以对所提出的建模和控制方法进行有效的验证。

尽管在水下机器人双机械手系统的动态建模与控制方面取得了显著进展,但仍面临许多挑战和未来的研究方向:

  • 高精度水动力建模:

     进一步提高水动力模型的精度,特别是对复杂几何形状和关节运动引起的水动力变化的精确描述。

  • 模型不确定性和外部干扰的鲁棒控制:

     设计更加鲁棒的控制器,以应对水动力参数不确定性、水流干扰、海洋环境复杂性等因素。

  • 基于视觉或力觉的闭环控制:

     结合视觉信息和力觉信息,实现更精细、更智能的协同作业控制,如基于视觉的协同目标识别和抓取,基于力觉的协同装配和操作。

  • 多智能体协调控制:

     当多个水下机器人协同作业时,需要研究多机器人之间的协同控制策略,提高整个系统的作业效率和能力。

  • 实验验证:

     将仿真结果与实际水下实验结果进行对比,验证模型的准确性和控制策略的有效性,并进行必要的参数修正和算法优化。

⛳️ 运行结果

🔗 参考文献

[1] 常文君,刘建成,于华南,等.水下机器人运动控制与仿真的数学模型[J].船舶工程, 2002(3):58-60.DOI:10.3969/j.issn.1000-6982.2002.03.015.

[2] 常文君,刘建成,于华南,等.水下机器人运动控制与仿真的数学模型[J].船舶工程, 2002.DOI:CNKI:SUN:CANB.0.2002-03-017.

[3] 谢海斌,沈林成.水下机器人动态系统协同建模方法研究[J].系统仿真学报, 2007, 19(9):5.DOI:10.3969/j.issn.1004-731X.2007.09.059.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值