【V2G】电动汽车接入电网优化调度研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着全球对可持续能源的日益关注和电动汽车(EV)技术的飞速发展,电动汽车已不再仅仅是交通工具,而是电网系统中潜在的分布式储能单元和可控负荷。车辆到电网(Vehicle-to-Grid, V2G)技术使电动汽车能够与电网进行双向能量互动,为电网的稳定运行、经济效益提升和新能源消纳提供了新的机遇。本文旨在深入探讨电动汽车接入电网的优化调度问题,重点分析其关键技术、挑战与机遇,并对未来的研究方向进行展望。

引言:气候变化和能源危机已成为人类社会面临的共同挑战。在此背景下,发展清洁能源和提高能源利用效率成为全球共识。电动汽车作为一种零排放或低排放的交通工具,正逐步取代传统燃油汽车,成为未来交通体系的重要组成部分。然而,大规模电动汽车的无序充电行为可能对电网的稳定性、可靠性和经济性带来冲击,如负荷峰谷差增大、配电网电压波动、设备过载等。

V2G技术的出现为解决上述问题提供了新的视角。通过V2G,电动汽车不仅可以从电网充电(G2V),还可以在需要时将储存在电池中的电能回馈给电网。这种双向能量流动使得电动汽车成为一个灵活的分布式储能系统,在电力系统中扮演着更为积极的角色。合理利用V2G技术,通过优化调度策略,可以有效地平抑电网负荷波动、提高电网运行效率、促进可再生能源的消纳,并为电动汽车用户带来经济收益。因此,深入研究电动汽车接入电网的优化调度具有重要的理论意义和实际应用价值。

第一章 电动汽车接入电网的关键技术

电动汽车接入电网实现V2G功能,涉及多个关键技术的支撑:

  1. 双向充电技术:这是实现V2G的基础。传统的电动汽车充电桩通常只支持单向充电(G2V)。实现V2G需要开发具备双向功率流控制能力的充电设备,即V2G充电桩。V2G充电桩能够根据调度指令,控制电能的双向流动,实现从电网到电动汽车的充电以及从电动汽车到电网的放电。双向充电技术需要解决高效率功率转换、电网兼容性(如功率因数校正、谐波抑制)、安全性以及通信协议等问题。

  2. 电池管理系统(BMS)与电池技术:电动汽车电池是储能的核心。电池管理系统负责监控电池的状态(如荷电状态SOC、电压、电流、温度)、保护电池免受过充过放、均衡各单体电池的电压,并评估电池的健康状况(SOH)。V2G运行模式下,电池的充放电循环次数和深度会增加,可能加速电池老化。因此,V2G优化调度需要考虑电池的SOH,避免对电池寿命造成过度影响。同时,电池技术的进步,如更高能量密度、更长循环寿命、更快的充放电速率等,也将显著提升V2G的应用潜力。

  3. 通信技术:实现电动汽车与电网之间的信息交互是优化调度的前提。这包括电动汽车与充电桩之间的通信、充电桩与电网控制中心之间的通信。通信内容包括电动汽车的当前状态(如位置、SOC、用户需求)、电网状态(如实时电价、负荷预测、发电计划)、调度指令等。可靠、安全、实时的通信技术是确保优化调度策略有效执行的关键。物联网(IoT)、5G等技术的应用将进一步提升通信的效率和可靠性。

  4. 信息物理融合系统(CPSS)技术:电动汽车接入电网形成了一个典型的信息物理融合系统。物理层包括电动汽车、充电设施、电网基础设施等;信息层包括数据采集、处理、通信、调度算法、控制系统等。V2G优化调度需要将物理层的运行状态实时反映到信息层进行决策,并将决策结果有效地控制物理层的行为。CPSS技术能够整合物理世界的感知与控制和信息世界的计算与通信,为复杂的V2G系统优化调度提供一体化解决方案。

第二章 电动汽车接入电网优化调度的目标与策略

电动汽车接入电网的优化调度旨在通过合理安排电动汽车的充放电行为,实现多个优化目标。常见的优化目标包括:

  1. 降低电网负荷峰谷差

    :通过在低谷时段为电动汽车充电、在高峰时段利用V2G放电,可以削峰填谷,平抑电网负荷曲线,提高电网的运行效率和稳定性。

  2. 提高电网运行经济性

    :利用分时电价或实时电价,在电价低谷时充电,在电价高峰时放电或减少充电,从而降低电力系统的运行成本,或为用户带来经济收益。

  3. 促进可再生能源消纳

    :当风电、光伏等可再生能源发电量过剩时,可以通过智能充电将这些多余的电能储存在电动汽车电池中;当可再生能源发电量不足时,可以通过V2G技术将储存的电能回馈电网,提高可再生能源的利用率。

  4. 提高电网的供电可靠性和弹性

    :在电网发生故障或极端事件时,电动汽车集群可以通过V2G提供备用容量或参与频率/电压调节,提高电网的抗干扰能力。

  5. 考虑用户需求和满意度

    :优化调度需要平衡电网的需求和用户的需求,如保证用户在需要时能够获得足够的电量用于出行,并尽量减少对用户充电时间、成本等方面的影响。

  6. 保护电池健康

    :如前所述,优化调度需要考虑电池的SOH,避免频繁深度充放电或长时间高功率充放电,以延长电池的使用寿命。

为了实现上述优化目标,可以采用多种调度策略:

  1. 基于电价的调度

    :根据实时电价或分时电价信号,引导电动汽车在电价低谷时充电,电价高峰时放电或暂停充电。

  2. 基于负荷预测的调度

    :结合电网负荷预测信息,预测未来一段时间内的负荷变化趋势,提前安排电动汽车的充放电计划,主动参与削峰填谷。

  3. 基于可再生能源预测的调度

    :根据风电、光伏等可再生能源的发电预测,调整电动汽车的充放电计划,实现与可再生能源出力的协同。

  4. 基于聚合商的调度

    :通过聚合商(Aggregator)将大量分散的电动汽车汇聚起来,形成一个虚拟电厂(Virtual Power Plant, VPP),由聚合商与电网进行交互和调度,向电网提供辅助服务。

  5. 分散式调度

    :由单个电动汽车或充电桩根据本地信息(如电价、电网状态信号)自主决定充放电行为,无需中央控制中心进行集中调度。这种方式对通信要求较低,但全局优化效果可能有限。

  6. 分布式协同调度

    :通过分布式算法,使相邻或相关的电动汽车或充电桩之间进行信息交互和协同决策,在实现局部优化的同时,趋近全局最优。

第三章 电动汽车接入电网优化调度的模型与算法

电动汽车接入电网的优化调度是一个复杂的优化问题,通常可以建模为数学规划问题,如线性规划、非线性规划、混合整数规划等。模型的建立需要考虑以下关键因素:

  1. 约束条件

    :包括电动汽车电池容量、当前SOC、目标SOC、最大充放电功率、充放电效率、用户出行需求、电网容量限制、电压稳定约束、线路潮流约束等。

  2. 目标函数

    :根据优化目标,可以是最小化系统运行成本、最小化负荷峰谷差、最大化可再生能源消纳量、最大化用户收益等。多个目标可以采用加权和或多目标优化的方式处理。

  3. 不确定性

    :电动汽车的接入时间和位置、用户出行需求、电网负荷、可再生能源出力等都存在不确定性。处理不确定性是优化调度的重要挑战,可以采用鲁棒优化、随机优化、场景分析等方法。

针对所建立的数学模型,可以采用多种算法进行求解:

  1. 传统优化算法

    :如线性规划的单纯形法、内点法,非线性规划的梯度下降法、牛顿法等。这些算法适用于问题规模较小、模型相对简单的情况。

  2. 智能优化算法

    :如遗传算法、粒子群优化算法、蚁群算法、模拟退火算法等。这些算法适用于解决非凸、非线性、高维度的优化问题,但可能无法保证找到全局最优解。

  3. 强化学习算法

    :将优化调度问题建模为马尔可夫决策过程,通过智能体与环境的交互学习最优的调度策略。强化学习尤其适用于处理动态、不确定性强的环境,如实时电价和用户行为的波动。

  4. 分层优化算法

    :对于大规模电动汽车集群,可以采用分层优化策略。例如,第一层由电网调度中心进行全局调度,向聚合商发送总体的调度指令;第二层由聚合商根据全局指令和管辖范围内电动汽车的具体情况进行精细化调度;第三层由单个电动汽车根据接收到的指令和自身状态进行执行。

  5. 模型预测控制(MPC)

    :MPC是一种滚动优化的控制策略,在每个时间步,根据当前的系统状态和未来一定时间范围内的预测信息,求解一个开环优化问题,并只执行第一个时间步的控制指令。然后在下一个时间步,重新测量系统状态并更新预测,重复上述过程。MPC能够有效地处理系统约束和动态变化。

第四章 电动汽车接入电网优化调度的挑战与机遇

虽然电动汽车接入电网的优化调度前景广阔,但也面临诸多挑战:

  1. 用户接受度

    :V2G的实施可能影响用户的出行自由、电池寿命以及隐私。如何平衡电网需求和用户需求,提高用户参与V2G的积极性,是关键挑战之一。经济激励、灵活的调度策略、透明的信息共享是提高用户接受度的重要手段。

  2. 电池寿命影响

    :频繁的充放电循环会加速电池老化。如何在优化调度的同时尽量减少对电池寿命的影响,需要深入研究V2G对不同类型电池SOH的影响机制,并在调度算法中考虑电池健康约束。

  3. 数据隐私与安全

    :电动汽车的充放电行为、位置信息等涉及用户隐私。如何确保数据的采集、传输、存储和使用过程中的安全性和隐私性,是重要的技术和法律挑战。区块链、差分隐私等技术可能提供解决方案。

  4. 通信基础设施与协议标准化

    :大规模电动汽车接入电网需要可靠、高效的通信基础设施和统一的通信协议。当前,不同厂商的充电设备和管理平台可能存在兼容性问题,阻碍了互操作性。推动相关标准的制定和实施至关重要。

  5. 电网基础设施改造

    :大规模电动汽车充放电可能对配电网造成冲击,如变压器过载、电压跌落等。部分老旧的配电网可能需要进行升级改造以适应V2G的需求。

  6. 市场机制与商业模式

    :目前, V2G的商业模式尚不成熟。如何建立合理的电价机制、辅助服务市场规则,鼓励用户和聚合商参与V2G,并形成可持续的商业模式,是推动V2G规模化应用的关键。

  7. 不确定性处理

    :用户行为、可再生能源出力、电网负荷等都具有高度不确定性,增加了优化调度的复杂性。如何开发鲁棒性强、适应性好的调度算法是研究重点。

尽管面临挑战,电动汽车接入电网优化调度也带来了前所未有的机遇:

  1. 能源互联网的重要组成部分

    :电动汽车作为移动的储能单元,将成为能源互联网中连接交通网和电网的关键节点,促进多能源系统的协同优化运行。

  2. 电网辅助服务的新来源

    :电动汽车集群可以为电网提供调峰、调频、备用容量等多种辅助服务,提高电网的运行灵活性和可靠性。

  3. 分布式能源的新应用场景

    :V2G技术为分布式光伏、储能等提供了新的应用场景,可以与电动汽车协同运行,提高能源的本地消纳率。

  4. 新的商业机会

    :V2G技术催生了聚合商、虚拟电厂运营商、充电服务提供商等新的商业主体,带来新的商业模式和就业机会。

  5. 推动智慧城市发展

    :电动汽车、智能充电基础设施、智能电网的协同发展,将加速智慧能源、智慧交通等智慧城市领域的建设。

第五章 未来展望与研究方向

未来,电动汽车接入电网的优化调度研究将朝着以下方向发展:

  1. 考虑多重不确定性的鲁棒/随机优化调度

    :进一步研究和开发能够有效应对用户行为、可再生能源出力、电价波动等多源不确定性的鲁棒和随机优化调度算法,提高调度策略的可靠性和适应性。

  2. 基于深度学习和强化学习的智能调度

    :利用大数据和人工智能技术,特别是深度学习和强化学习,构建能够自主学习和适应复杂动态环境的智能调度系统,实现更精细、更实时的优化控制。

  3. 考虑电池健康和寿命的优化调度

    :深入研究V2G对不同类型电池衰退机理的影响,建立更精确的电池健康模型,并在优化目标或约束中充分考虑电池寿命的影响,实现电网效益与电池寿命的平衡。

  4. 大规模电动汽车集群的分层/分布式协同调度

    :针对未来海量电动汽车接入电网的场景,研究高效、可扩展的分层和分布式协同优化调度算法,避免中央集中调度的计算瓶颈。

  5. 电动汽车与微电网/虚拟电厂的协同优化

    :研究电动汽车集群与微电网、虚拟电厂的协同运行模式,充分发挥电动汽车在局域能源系统中的灵活性和储能能力。

  6. 基于区块链等新技术的安全隐私保护调度

    :探索利用区块链等分布式账本技术,构建安全、透明、可追溯的V2G数据交互平台,保护用户隐私和数据安全。

  7. 考虑用户行为和激励机制的社会-技术协同调度

    :将社会学、心理学等因素纳入调度模型,研究用户参与V2G的意愿和行为模式,设计合理的经济激励和互动机制,提高用户参与度。

  8. 软硬件协同优化与标准化

    :推动V2G相关的充电设备、通信协议、控制接口等标准化,实现不同厂商设备之间的互联互通和协同工作。

结论:电动汽车接入电网的优化调度是构建未来智能电网和能源互联网的关键技术之一。通过合理的优化调度策略,V2G技术能够为电网带来显著的经济、环境和社会效益。虽然当前面临用户接受度、电池寿命、数据安全等多重挑战,但随着技术的不断进步和相关政策、市场机制的逐步完善,电动汽车在电网中的作用将日益重要。未来的研究应更加注重不确定性处理、人工智能的应用、电池健康保护、大规模系统协同以及用户行为的考量,以推动V2G技术的规模化应用,最终实现交通与能源系统的深度融合与可持续发展。

⛳️ 运行结果

图片

图片

图片

图片

图片

🔗 参考文献

[1] 何丽娜.电动汽车充电负荷频率响应控制策略研究[D].湖南大学,2014.DOI:CNKI:CDMD:2.1014.301242.

[2] 王晓涵.电动汽车充放电行为建模及V2G研究[D].广西大学,2015.

[3] 任百峰.基于V2G技术的电动汽车充电站与电网接入技术研究[D].燕山大学,2014.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值