第七集 最优间隔分类器问题

        本课首先提出了原始的优化问题:最优间隔分类器问题,之后介绍了对偶问题的概念和KKT条件,之后基于原始优化问题的对偶问题的分析,介绍了SVM算法。课程的最后对SVM算 法进行了评价,以引出下节课对核方法的介绍。

回顾:

对于几何间隔来说,以相同的比例缩放w,b,不会对几何间隔造成影响。
对最大间隔分类器的另一种表述:

优化目标:


约束条件:
下面对这个优化问题进行等效分析: ,又因为 ,所以优化目标就变成了 ,约束条件为

下面要用到的知识为拉格朗日数乘法,具体定义可以百度。这里提出几个重要概念,约束条件,拉格朗日算子,拉格朗日乘数。


原始优化


假设我们为解决一个问题而定下的优化目标为 ,而它的约束条件为:

所以针对这个问题的拉格朗日算子为:

定义

下面让我们来考虑一种情况,即约束条件被违背时会发生什么。

如果 ,这是因为 可以取任意大的正数;如果 。所以在满足所有约束条件的情况下:



所以 即为原始问题。

对偶优化

上面原始问题的对偶优化问题如下所示:


在一定条件下,原始优化和对偶优化会取相同的值。即 。我们通常会通过求解一个问题的对偶问题来解决原始问题。这是因为对偶问题往往更加简单并且有很多很有用的性质。

原始问题与对偶问题等价的条件

令f(w)为凸函数,假设 ,然后 是原始问题的解; 是拉格朗日乘数,是对偶问题的解,并且

则等价条件是:



以上条件统称为KKT互补条件。


根据KKT互补条件和实际情况,我们不妨做出如下推论:

下面介绍SVM中所用的拉格朗日数乘法:

在SVM中,只需要一组拉格朗日乘数 ,有两组参数w,b。

拉格朗日算子为:

图形示意如下,只有函数间隔为1且 不等于0的数据点才能称作支持向量。





对偶问题



将倒数第二个式子代入原始问题的拉格朗日算子中可得:



在对偶问题中我们的目标是最大化 ,同时满足以下约束条件:



当我们解出 后可以根据下面的式子解出其他参数:



另外可根据下式判断出新输入的数据点的类别:



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值