darknet之region_layer源码分析

void forward_region_layer(const region_layer l, network_state state)
{
   
    int i,j,b,t,n;
    // 25
    int size = l.coords + l.classes + 1;
    memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float));
    #ifndef GPU
    flatten(l.output, l.w*l.h, size*l.n, l.batch, 1);
    #endif
    // 每个预测框的置信度
    for (b = 0; b < l.batch; ++b){
   
        for(i = 0; i < l.h*l.w*l.n; ++i){
   
            int index = size*i + b*l.outputs;
            l.output[index + 4] = logistic_activate(l.output[index + 4]);
        }
    }


#ifndef GPU
    if (l.softmax_tree){
   
        for (b = 0; b < l.batch; ++b){
   
            for(i = 0; i < l.h*l.w*l.n; ++i){
   
                int index = size*i + b*l.outputs;
                softmax_tree(l.output + index + 5, 1, 0, 1, l.softmax_tree, l.output + index + 5);
            }
        }
    } else if (l.softmax){
   
        for (b = 0; b < l.batch; ++b){
   
            for(i = 0; i < l.h*l.w*l.n; ++i){
   
                int index = size*i + b*l.outputs;
                softmax(l.output + index + 5, l.classes, 1, l.output + index + 5, 1);
            }
        }
    }
#endif
    if(!state.train) return;
    memset(l.delta, 0, l.outputs * l.batch * sizeof(float));
    float avg_iou = 0;
    float recall = 0;
    float avg_cat = 0;
    float avg_obj = 0;
    float avg_anyobj = 0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刀么克瑟拉莫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值