MLP、Share MLP、 conv1d介绍

在这里插入图片描述
在理解pointnet的时候,有shared mlp这一层,不清楚是什么东西,于是网上查阅了资料,以share mlp为关键词就能查到许多很好的资料,以下只是整理。

MLP参考文章,这一张图应该就够了。
在这里插入图片描述
share mlp(左图)
在这里插入图片描述
我觉的原博主的图画的没有对比的作用

在这里插入图片描述
用这个与MLP的图进行比对,就能发现share MLP本质上就是MLP。不过是点云中的一种叫法而已,强调,所有的点都是用的相同的参数。

一维卷积参考 conv1d是实现share MLP的原理,使用的卷积计算。

在这里插入图片描述
在这里插入图片描述

这是一个 PointNet 的特征传递模块,将一个点云的特征传递给另一个点云。下面我们来详细解释一下代码的实现过程: 首先,我们看到了 `PointnetFPModule` 类的定义,它继承自 `nn.Module`。在构造函数中,我们可以看到有两个参数:`mlp` 和 `bn`,其中 `mlp` 是一个整数列表,表示一个多层感知机,`bn` 表示是否使用 BatchNorm。接着,我们定义了一个 `pt_utils.SharedMLP` 类型的成员变量 `self.mlp`,用于对输入的特征进行多层感知机计算。 接下来,我们看到了 `forward` 函数的实现。这个函数接收四个参数: - `unknown`:表示未知点云的位置信息,形状为 (B, n, 3)。 - `known`:表示已知点云的位置信息,形状为 (B, m, 3)。 - `unknown_feats`:表示未知点云的特征信息,形状为 (B, C1, n)。 - `known_feats`:表示已知点云的特征信息,形状为 (B, C2, m)。 其中,`B` 表示 batch size,`n` 表示未知点云的点数,`m` 表示已知点云的点数,`C1` 和 `C2` 分别表示未知点云和已知点云的特征维度。 接下来的代码实现主要目的是将未知点云的特征传递给已知点云。具体步骤如下: 1. 计算未知点云和已知点云中最近的三个点,使用 `pointnet2_utils.three_nn` 函数实现。得到的 `idx` 是一个形状为 (B, n, 3) 的整数张量,其中每个元素表示当前未知点云中最近的三个点在已知点云中的索引。 2. 计算每个未知点云和已知点云中最近的三个点之间的距离,使用 `pointnet2_utils.three_nn` 函数实现。得到的 `dist` 是一个形状为 (B, n, 3) 的浮点数张量,其中每个元素表示当前未知点云和已知点云之间的距离。 3. 计算每个未知点云和已知点云中最近的三个点之间的距离的倒数,加上一个较小的常数,避免除以零错误,使用 `dist_recip = 1.0 / (dist + 1e-8)` 实现。 4. 对每个未知点云和已知点云中最近的三个点之间的距离的倒数进行归一化,使用 `norm = torch.sum(dist_recip, dim=2, keepdim=True)` 实现。得到的 `norm` 是一个形状为 (B, n, 1) 的浮点数张量,其中每个元素表示当前未知点云和已知点云之间的距离之和。 5. 计算每个未知点云和已知点云中最近的三个点之间的权重,使用 `weight = dist_recip / norm` 实现。得到的 `weight` 是一个形状为 (B, n, 3) 的浮点数张量,其中每个元素表示当前未知点云和已知点云之间的权重。 6. 对已知点云中的特征进行插值,使用 `pointnet2_utils.three_interpolate` 函数实现。得到的 `interpolated_feats` 是一个形状为 (B, C2, n) 的浮点数张量,其中每个元素表示当前未知点云中最近的三个点在已知点云中对应点的特征。 7. 将插值得到的已知点云特征和未知点云特征进行拼接,使用 `torch.cat([interpolated_feats, unknow_feats], dim=1)` 实现。得到的 `new_features` 是一个形状为 (B, C2 + C1, n) 的浮点数张量,其中每个元素表示当前未知点云中最近的三个点在已知点云中对应点的特征和未知点云的特征。 8. 将 `new_features` 维度增加一维,使用 `new_features.unsqueeze(-1)` 实现,得到的 `new_features` 是一个形状为 (B, C2 + C1, n, 1) 的浮点数张量。 9. 将 `new_features` 输入到多层感知机中,使用 `self.mlp(new_features)` 实现。得到的 `new_features` 是一个形状为 (B, mlp[-1], n, 1) 的浮点数张量。 10. 将 `new_features` 维度减少一维,使用 `new_features.squeeze(-1)` 实现,得到的 `new_features` 是一个形状为 (B, mlp[-1], n) 的浮点数张量,表示传递后的特征。 最后,返回传递后的特征 `new_features`。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rglkt

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值