Zero-shot Learning零样本学习 论文阅读(七)——Unsupervised Domain Adaptation for Zero-Shot Learning

本文介绍了如何利用无监督领域适应解决零样本学习(ZSL)中的域转移问题。通过结合字典学习和传统ZSL方法,建立从源域到目标域的适应框架,并引入正则化项以改善分类性能。实验表明,这些额外的正则化项提高了模型在不可见类别的分类能力。
摘要由CSDN通过智能技术生成

Zero-shot Learning零样本学习 论文阅读(七)——Unsupervised Domain Adaptation for Zero-Shot Learning


这篇论文运用了一个unsupervised domain adaptation的技巧结合正则化字典稀疏学习,主要解决zero-shot learning中的domain shift问题。

背景

字典稀疏学习

  1. 稀疏表示
    假如我们用矩阵 X = { x 1 , x 2 , ⋯   , x n } ∈ R d × n X=\{x_1,x_2,\cdots,x_n\}\in R^{d\times n} X={ x1,x2,,xn}Rd×n表示数据集,每一列代表一个样本,即 n n n个样本,每个样本有 d d d维属性.一般情况下这个矩阵的大多数元素不为零,称之为稠密的.
    稀疏表示的含义是,寻找一个系数矩阵 A = { α 1 , α 2 , ⋯   , α n } ∈ R k × n A=\{\alpha_1,\alpha_2,\cdots,\alpha_n\}\in R^{k\times n} A={ α1,α2,,αn}Rk×n以及一个字典矩阵 B ∈ R d × k B\in R^{d\times k} BRd×k,使得 B A BA BA尽可能的还原 X X X,且 A A A尽可能稀疏,则 A A A就为 X X X的稀疏表示.
  2. 字典学习
    为普通稠密表达的样本找到合适的字典,将样本转化为合适的稀疏表达形式,从而使学习任务得以简化,模型复杂度得以降低,通常称为"字典学习"(dictionary learning).
    目标函数:
    min ⁡ B , α i ∑ i = 1 m ∥ x i − B α i ∥ 2 2 + λ ∑ i = 1 m ∥ α i ∥ 1 \min _{B, \alpha_{i}} \sum_{i=1}^{m}\left\|x_{i}-B \alpha_{i}\right\|_{2}^{2}+\lambda \sum_{i=1}^{m}\left\|\alpha_{i}\right\|_{1} B,αimini=1mxiBαi22+λi=1mαi1
    其中, x i x_i xi为第 i i i个样本, B B B为字典矩阵, α i \alpha_i αi x i x_i xi的稀疏表示, λ \lambda λ为大于0的参数。

上式中第一个累加项说明了字典学习的第一个目标是字典矩阵与稀疏表示的线性组合尽可能的还原样本;第二个累加项说明了alphai应该尽可能的稀疏。之所以用L1范式是因为L1范式正则化更容易获得稀疏解。
求解过程中:对字典 B B B以及样本稀疏表示 α i \alpha_i αi交替迭代优化。即先初始化字典 B B B,(1)固定字典 B B B α i \alpha_i αi进行优化;(2)固定 A A A对字典 B B B进行优化。重复上述两步,求得最终

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值