【瑞模网】新版SD WebUI卡安装Open_Clip解决方法

文章介绍了在更新A1111的Stable Diffusion WebUI后,由于网络环境问题导致Open Clip无法安装的问题,并提供了三种解决方案:改善网络环境,使用Steam++或fastgit加速,以及手动安装国内源的open_clip。详细步骤包括如何替换git源为可访问的Gitee链接,并执行命令完成安装。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近不少人遇到更新了A1111的Stable Diffusion WebUI后, 启动后下载Open Clip失败, 提示"RuntimeError: Couldn't install open_clip." 等.

该问题出现的原因是国内特殊网络环境无法正常连接到该github仓库, 进而没法下载open_clip导致的.

所以解决方法也很简单, 主要分为三个:

  1. 解决网络环境问题, 可以在路由端进行科学的上网环境布置, 使得pip与git的流量可以经过代理, 这是算是比较根本上的解决了, 可以解决日后的大部分同类型问题..
  2. 或者如果你在使用某个长得像猫猫的东西(CFW), 用TUN mode也能解决.
  3. 用Steam++(Watt Toolkit)/fastgit来给git加速/代理, 我个人没试过, 不过或许可行.
  4. 手动安装国内源/镜像的open_clip,针对性的解决该问题.

这里详细的讲下三,前俩网上有挺多教程, 我就不赘述了.

Traceback (most recent call last):
  File "C:\ufhy\Stable-Diffusion\launch.py", line 307, in <module>
    prepare_environment()
  File "C:\ufhy\Stable-Diffusion\launch.py", line 230, in prepare_environment
    run_pip(f"install {openclip_package}", "open_clip")
  File "C:\ufhy\Stable-Diffusion\launch.py", line 93, in run_pip
    return run(f'"{python}" -m pip {args} --prefer-binary{index_url_line}
### 如何离线部署安装 Stable Diffusion WebUICLIP 对于希望在无网络环境中部署和使用 Stable Diffusion WebUI (A1111) 的用户来说,提前准备所需的依赖包至关重要。以下是详细的离线部署指南: #### 准备阶段 为了确保能够顺利地完成离线环境下的安装工作,在有互联网连接的情况下预先下载所有必要的文件非常重要。 - **获取所需库**:针对 `clip` 和其他可能需要的 Python 库,可以在联网机器上执行如下命令来导出这些库到一个可移植的位置: ```bash pip download clip -d ./offline_packages/ ``` 这会把 `clip` 及其所有的依赖项打包成 `.whl` 文件存放在指定目录下[^2]。 - **下载模型和其他资源**:除了Python库之外,还需要考虑一些预训练好的权重文件或其他静态资产。访问官方GitHub仓库页面找到对应的链接手动下载它们,并保存至U盘或者其他移动存储设备中以便后续转移给目标主机使用[^3]。 #### 部署阶段 一旦上述准备工作就绪,则可以按照下面步骤来进行最终的目标系统的配置: - 将之前收集起来的所有`.whl`格式软件包拷贝进入目标计算机内的某个固定路径(比如 `/path/to/offline_packages/`) - 利用Miniconda创建一个新的独立运行空间用于隔离不同项目之间的冲突风险;这一步骤同样适用于在线场景中的常规做法[^1] ```bash conda create --name sd-webui python=3.10 conda activate sd-webui ``` - 接下来就是批量安装那些事先已经准备好轮子们了——只需切换回刚刚激活的那个Conda环境下再依次调用pip工具即可实现自动化处理过程 ```bash pip install /path/to/offline_packages/*.whl ``` - 对于像OpenCLIP这样的特殊组件如果也存在类似的离线版本的话记得一并加入进来以保证整个框架的功能完整性 - 最后依照正常流程启动应用程序测试一切是否按预期那样运作良好 ```python import torch from PIL import Image import requests from io import BytesIO from transformers import CLIPProcessor, CLIPModel model_name = "openai/clip-vit-base-patch32" processor = CLIPProcessor.from_pretrained(model_name) model = CLIPModel.from_pretrained(model_name) url = 'https://unsplash.com/photos/some_image_url' response = requests.get(url) image = Image.open(BytesIO(response.content)) inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True) outputs = model(**inputs) logits_per_image = outputs.logits_per_image # this is the image-text similarity score probs = logits_per_image.softmax(dim=1) # we can take the softmax to get probability print(probs) ``` 这段代码展示了如何加载预训练的CLIP模型并对图片进行分类预测,不过请注意这里的请求部分仅作示范之用,在完全断网状态下自然无法生效,因此建议读者朋友们根据实际情况调整输入源为本地文件形式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值