叶绿体基因组核酸多态性(Pi)分析

叶绿体基因组Pi分析(Nucleotide diversity)

B站链接

目前Pi分析已集成之CPStools软件中,可一键进行计算

手把手注释教学

在这里插入图片描述

今天主要分享绘制这一张图需要做的工作。

1. 准备正确注释的gb文件(自己注释以及NCBI上下载的想比较分析的物种gb文件)
2. 从注释文件中提取共有基因和共有间区序列
3. 使用DNAsp计算其Pi值(Nucleotide diversity)
4. 按照基因和间区序列在叶绿体基因组上的位置进行排序
5. 可视化

写在末尾
提取间区序列,一直使用的是PGA里面带的一个脚本,但是最近感觉脚本不能很好的考虑首尾的基因,看不懂perl语言,因此用Python自己写了一个。 绘制这样一张图还是比较费劲的,结合来看差不多用到了9个脚本。然后再使用R进行可视化,PS修图。
如果有需要,可以加Q联系:753392597

关于叶绿体基因组M Vista相关的生物信息学工具和研究,可以找到如下信息: M VISTA是一种用于可视化序列保守性的在线工具,最初设计用来比较非编码DNA区域以识别潜在的功能元件。对于叶绿体基因组的研究人员来说,M VISTA可以帮助对比不同物种之间的同源序列,从而揭示进化关系或者特定区域内可能存在的功能重要性。 当涉及到叶绿体基因组时,研究人员可能会使用M VISTA来执行以下几种类型的分析: - 对比两个或更多个叶绿体基因组间的相似性和差异。 - 分析特定基因或调控区段在多种植物中的保守程度。 - 探讨某些特殊片段(比如IR区, inverted repeat region)的变异模式及其对叶绿体结构的影响。 除了直接运用M VISTA之外,在处理叶绿体数据集方面还有许多其他的生物信息学资源可供选择: - GeSeq是一个专门针对质体(包括叶绿体)和其他小型环状复制单元而优化的自动化注释平台。 - Bandage是一款图形界面应用程序,它能够帮助科研工作者从复杂的de novo装配图中提取有用的信息,适用于初步探索未知样本的数据特性。 - ChloroBox提供了多样的在线服务和支持材料,旨在促进有关光合作用器官遗传物质的基础科学研究进展。 此外,随着高通量测序技术和计算能力的发展,越来越多的新算法被开发出来辅助解析复杂的生命现象。例如,有学者提出了基于机器学习的方法预测叶绿体RNA编辑位点;还有一些团队致力于构建综合数据库整合已知的所有叶绿体相关信息以便更深入地理解这些独特的细胞器。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值