构建复杂且高效的人机协作工作流?Agentic Workflows

d72c43b5f3bbd78e5dfd435edb4dd6f3.jpeg

智能创作引擎架构设计

核心原理

一个 AI 原生创作引擎,通过自由形式的画布界面,结合多线程对话、知识库 RAG 集成、上下文记忆、智能搜索和所见即所得的 AI 编辑器等功能,帮助用户轻松将想法转化为生产级内容。

模块详解

1. 前端模块 (apps/web)

  • 输入/输出: 用户界面交互、画布操作、编辑器操作

  • 实现原理: 基于 React + Vite 构建,使用 ReactFlow 实现可视化工作流,Tiptap 实现协同编辑

  • 核心代码:

dbb7a5520f8fa5abdb196fac1c913bd4.png

2. 后端模块 (apps/api)

  • 输入/输出: API 请求处理、AI 模型调用、数据持久化

  • 实现原理: 基于 NestJS 构建,集成 Prisma ORM、Redis 缓存、ES 搜索

  • 核心代码:

f1356d29a1cf0194d5debca6efb9309e.png

系统流程图

a445f404868d4ceccaf21f093b58cb9a.png

补充说明

  1. 采用 yjs 实现分布式状态管理和数据同步,确保多用户协作的一致性

  2. 通过 Elasticsearch 和 Qdrant 实现双重搜索能力,支持文本搜索和向量检索

  3. 使用 Docker 容器化部署,支持快速部署和扩展

类似项目:

https://github.com/refly-ai/refly

近期推荐:

火热开启!0基础2天蜕变全栈开发者#AI编程训练营,N7开始报名

### RAG与AI结合的工作流实现方式 RAG(Retrieval-Augmented Generation)是一种将检索增强引入生成式人工智能的技术框架。其核心理念在于通过结合检索技术和大语言模型的能力,提升生成内容的相关性和准确性。 #### 技术架构概述 RAG 的工作流程通常分为三个主要部分:数据索引、多路召回和融合重排序[^1]。以下是具体实现细节: - **数据索引** 数据索引是整个 RAG 流程的基础环节。原始文档被处理成适合向量化的形式,并存储于高效的向量数据库中。这种设计使得后续的相似度查询能够快速完成。现代 RAG 系统支持多种类型的输入源,包括结构化数据表、非结构化文本文件甚至多媒体资源[^2]。 - **多路召回** 多路召回机制允许系统从多个维度获取潜在相关的信息片段。例如,在面对复杂查询时,不仅依赖单一语义匹配路径,还会综合考虑关键词频率分布等因素来扩大候选集范围。这种方法有效提高了最终结果覆盖广度的同时也保持了一定精度水平。 - **融合重排序** 融合重排序是对初步筛选出来的候选项进一步加工的过程。它利用更复杂的算法评估各个备选答案的质量得分,并据此调整顺序排列位置。此步骤对于确保输出最贴近实际需求至关重要。 #### 高级特性扩展 除了基本功能外,现代化 RAG 解决方案还提供了额外增值组件以满足不同场景下的特殊要求: - 支持配置不同类型的大规模预训练语言模型 (LLM),以便适应特定领域内的专业知识表达习惯; - 向量嵌入技术灵活定制,适配客户自有资料库特点; - 易于集成的标准 RESTful APIs 接口定义,简化第三方应用程序对接难度。 此外值得注意的是,“Agentic RAG”作为最新发展趋向之一,尝试将传统意义上独立运作的两项关键技术——即 Retrieval Augmentation 和 Autonomous Agent ——结合起来形成全新范式。这种方式有望在未来带来更加智能化的服务体验[^3]。 ```python import faiss from sentence_transformers import SentenceTransformer def build_index(documents): model = SentenceTransformer('all-MiniLM-L6-v2') embeddings = model.encode(documents, convert_to_tensor=True) dimension = embeddings.shape[1] index = faiss.IndexFlatL2(dimension) index.add(embeddings.cpu().numpy()) return index def search(index, query, top_k=5): model = SentenceTransformer('all-MiniLM-L6-v2') vector = model.encode(query).reshape(1,-1) distances, indices = index.search(vector,top_k) return distances, indices ``` 以上代码展示了如何构建简单的 FAISS 向量索引并执行基础搜索操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值