YOLO目标检测创新改进与实战案例专栏
专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
专栏链接: YOLO基础解析+创新改进+实战案例
在快速发展的计算机视觉领域,对象分割在从图像中提取有意义的信息方面发挥着关键作用。在众多分割算法中,YOLOv9 已成为一种强大且适应性强的解决方案,提供高效的分割功能和卓越的准确性
在这篇文章中,我们将深入探讨 YOLOv9 在自定义数据集上进行对象分割的训练过程,并对测试数据进行推理。
第 1 步 |下载数据集
在本教程中,我们将使用 Furniture BBox To Segmentation (SAM)。获取家具 BBox 到细分 (SAM) 数据集。你可以从 Kaggle下载它
步骤 2 |安装 Ultralytics
!pip install ultralytics -q
导入必要的库
from ultralytics import YOLO # 导入YOLO模型库
import matplotlib
matplotlib.use('TkAgg') # 或尝试使用其他后端如 'Agg', 'Qt5A
本文详述了如何使用YOLOv9在自定义数据集Furniture BBox To Segmentation (SAM)上进行对象分割训练,涵盖了从下载数据集、安装Ultralytics到训练模型和对测试图像进行推理的全过程。
订阅专栏 解锁全文
1357

被折叠的 条评论
为什么被折叠?



