YOLOv9教程:如何在自定义数据上进行YOLOv9的分割训练

本文详述了如何使用YOLOv9在自定义数据集Furniture BBox To Segmentation (SAM)上进行对象分割训练,涵盖了从下载数据集、安装Ultralytics到训练模型和对测试图像进行推理的全过程。
摘要由CSDN通过智能技术生成

YOLO目标检测创新改进与实战案例专栏

专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLO基础解析+创新改进+实战案例

在快速发展的计算机视觉领域,对象分割在从图像中提取有意义的信息方面发挥着关键作用。在众多分割算法中,YOLOv9 已成为一种强大且适应性强的解决方案,提供高效的分割功能和卓越的准确性

在这篇文章中,我们将深入探讨 YOLOv9 在自定义数据集上进行对象分割的训练过程,并对测试数据进行推理。

第 1 步 |下载数据集

在本教程中,我们将使用 Furniture BBox To Segmentation (SAM)。获取家具 BBox 到细分 (SAM) 数据集。你可以从 Kaggle下载它

数据集

步骤 2 |安装 Ultralytics

!pip install ultralytics -q

导入必要的库


from ultralytics import YOLO  # 导入YOLO模型库
import matplotlib
matplotlib.use('TkAgg')  # 或尝试使用其他后端如 'Agg', 'Qt5A
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO大师

你的打赏,我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值