深度强化Q学习-基于微软AirSim仿真环境的自动驾驶案例(原理代码详解简易可行)


最近在学习《强化学习原理与Python实现》,肖智清著。参考第十二章的自动驾驶案例,写一篇总结,尽量做到简单可行,让有志于自动驾驶的小伙伴可以通过此篇博客可以管中窥豹,初步了解自动驾驶的强化学习训练过程。
自动驾驶任务存在于连续的时间环境中,并且没有公认的奖励定义,也没有公认的回合划分。本篇将自动驾驶问题转化为回合制的强化学习任务,设计以车辆观察图像和运行状态为输入的自动驾驶算法,并在AirSim仿真环境中进行训练和测试。本篇使用带经验回放和目标网络的基于深度Q网络算法设计并实现智能体,对经验回放、目标网络和深度Q学习算法进行简单介绍,并用代码实现。
希望你能耐心看完这篇文章,干货满满,必有收获。另外码字不易,博主现在博客等级还是2级,不能自主创建索引标签,意味着博主的文章不能被更多人看到。如果你可以学到新知识,请来个一键三连(点赞关注收藏)吧,你的关注是我更新的动力,原理代码视频都有了,你就说该不该三联。

1. 安装和运行AirSim

本篇的自动驾驶算法基于AirSim仿真环境。AirSim是Microsoft发布的开源仿真软件,绿色免安装,请访问AirSim网页&#

评论 54
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值