大模型ReAct提示框架

这篇文章介绍了ReAct框架,一种结合了LLM的推理和行动能力,使其能生成推理轨迹并与外部资源交互的模型。实验结果显示ReAct在知识密集和决策任务中表现出色,尤其与思想链(CoT)和OpenAI工具结合时,增强了模型的解释性和可靠性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Yao 等人于 2022 年引入了一个名为 ReAct 的框架,其中 LLM 用于以交错的方式生成推理轨迹(reasoning traces)和特定于任务的操作。

生成推理轨迹允许模型诱导、跟踪和更新行动计划,甚至处理异常。 操作步骤允许与外部源(例如知识库或环境)交互并收集信息。

ReAct 框架可以允许LLM与外部工具交互,以检索更多信息,从而获得更可靠和更真实的响应。

结果表明,ReAct 在语言和决策任务方面的表现可以优于多种最先进的基线。 ReAct 还可以提高LLM的人类可解释性和可信度。 总的来说,作者发现最好的方法是使用 ReAct 与思想链 (CoT) 相结合,允许使用推理过程中获得的内部知识和外部信息。

NSDT工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 - REVIT导出3D模型插件 - 3D模型语义搜索引擎 - Three.js虚拟轴心开发包 

1、ReAct原理

ReAct 的灵感来自行动(acting)和推理(reasoning)之间的协同作用,它使人类能够学习新任务并做出决策或推理。

思想链 (CoT) 提示显示了LLM执行推理跟踪以生成涉及算术和常识推理等问题的答案的能力 (Wei et al., 2022)。 但缺乏与外部世界的接触或无法更新其知识可能会导致事实幻觉和错误传播等问题。

ReAct 是一种将推理和行动与LLM相结合的通用范式。 ReAct 提示LLM为任务生成口头推理轨迹和

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值