CNN、RNN、LSTM和Transformer架构对比与分析

CNN、RNN、LSTM和Transformer架构对比与分析

一、基本架构对比

1.1 整体架构图示

Transformer
LSTM(长短期记忆网络)
RNN(循环神经网络)
CNN(卷积神经网络)
前馈神经网络
自注意力层
Add & Norm
输出
遗忘门
输入门
单元状态
输出门
隐藏状态h1
输入x1
隐藏状态h2
隐藏状态h3
输出
卷积层
输入层
池化层
卷积层
池化层
全连接层

二、核心特点分析

2.1 CNN特点

CNN架构特点
权重共享
局部感知
多层特征
空间降维
# CNN基本实现
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv_layers = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(2),
            nn.Conv2d(64, 128, kernel_size=3, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(2)
        )
        self.fc_layers = nn.Sequential(
            nn.Linear(128 * 8 * 8, 512),
            nn.ReLU(),
            nn.Linear(512, 10)
        )
    
    def forward(self, x):
        x = self.conv_layers(x)
        x = x.view(x.size(0), -1)
        x = self.fc_layers(x)
        return x

2.2 RNN特点

RNN工作流程
状态传递
序列输入
序列输出
梯度问题
# RNN基本实现
class SimpleRNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(SimpleRNN, self).__init__()
        self.hidden_size = hidden_size
        self.rnn = nn.RNN(input_size, hidden_size, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)
    
    def forward(self, x, hidden):
        out, hidden = self.rnn(x, hidden)
        out = self.fc(out[:, -1, :])
        return out, hidden
    
    def init_hidden(self, batch_size):
        return torch.zeros(1, batch_size, self.hidden_size)

2.3 LSTM特点

LSTM门控机制
遗忘门
输入门
单元状态
输出门
# LSTM基本实现
class LSTM(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, output_size):
        super(LSTM, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)
        
    def forward(self, x):
        h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size)
        c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size)
        
        out, (hn, cn) = self.lstm(x, (h0, c0))
        out = self.fc(out[:, -1, :])
        return out

2.4 Transformer特点

Transformer注意力机制
注意力分数
Query
Key
加权求和
Value
# Transformer注意力机制实现
class MultiHeadAttention(nn.Module):
    def __init__(self, d_model, num_heads):
        super(MultiHeadAttention, self).__init__()
        self.num_heads = num_heads
        self.d_model = d_model
        assert d_model % num_heads == 0
        
        self.d_k = d_model // num_heads
        self.w_q = nn.Linear(d_model, d_model)
        self.w_k = nn.Linear(d_model, d_model)
        self.w_v = nn.Linear(d_model, d_model)
        self.w_o = nn.Linear(d_model, d_model)
        
    def scaled_dot_product_attention(self, Q, K, V, mask=None):
        scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k)
        if mask is not None:
            scores = scores.masked_fill(mask == 0, -1e9)
        attention = F.softmax(scores, dim=-1)
        return torch.matmul(attention, V)
    
    def forward(self, query, key, value, mask=None):
        batch_size = query.size(0)
        
        Q = self.w_q(query).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
        K = self.w_k(key).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
        V = self.w_v(value).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
        
        x = self.scaled_dot_product_attention(Q, K, V, mask)
        x = x.transpose(1, 2).contiguous().view(batch_size, -1, self.d_model)
        
        return self.w_o(x)

三、应用场景对比

3.1 适用任务类型

网络类型图像处理序列处理长序列依赖并行计算
CNN★★★★★★★★★★★
RNN★★★★★★
LSTM★★★★★★★★★★★
Transformer★★★★★★★★★★★★★★★★★

3.2 典型应用示例

# 多模型组合应用示例
class HybridModel(nn.Module):
    def __init__(self):
        super(HybridModel, self).__init__()
        # CNN用于特征提取
        self.cnn = CNN()
        # LSTM用于序列建模
        self.lstm = LSTM(input_size=128, hidden_size=256, num_layers=2, output_size=64)
        # Transformer用于关系建模
        self.transformer = TransformerLayer(d_model=64, num_heads=8)
        
    def forward(self, image, sequence):
        # 1. 图像特征提取
        image_features = self.cnn(image)
        
        # 2. 序列处理
        sequence_features = self.lstm(sequence)
        
        # 3. 特征融合和关系建模
        combined_features = torch.cat([image_features, sequence_features], dim=1)
        output = self.transformer(combined_features)
        
        return output

四、性能与效率对比

4.1 计算复杂度

graph LR
    subgraph 计算复杂度
        A[CNN] -->|O(k*n)| B[RNN]
        B -->|O(n)| C[LSTM]
        C -->|O(n^2)| D[Transformer]
    end

4.2 内存消耗

各模型的内存使用特点:

  • CNN:与输入尺寸和层数相关
  • RNN:与序列长度线性相关
  • LSTM:比RNN需要更多内存
  • Transformer:与序列长度的平方相关

五、优缺点总结

5.1 CNN

优点:

  • 局部特征提取能力强
  • 参数共享,效率高
  • 适合处理网格结构数据

缺点:

  • 全局感受野受限
  • 不适合处理序列数据
  • 空间信息可能丢失

5.2 RNN

优点:

  • 适合处理序列数据
  • 参数量相对较少
  • 可处理变长序列

缺点:

  • 训练困难(梯度消失/爆炸)
  • 长序列记忆能力差
  • 并行度低

5.3 LSTM

优点:

  • 解决了RNN的梯度问题
  • 更好的长期依赖能力
  • 信息流控制更灵活

缺点:

  • 计算复杂度高
  • 训练时间长
  • 并行化程度低

5.4 Transformer

优点:

  • 并行计算能力强
  • 可以处理长距离依赖
  • 注意力机制效果好

缺点:

  • 计算复杂度高
  • 需要大量训练数据
  • 位置编码可能不够理想

六、发展趋势

6.1 混合架构

混合架构趋势
特征融合
CNN特征提取
LSTM时序建模
Transformer关系建模

6.2 未来方向

  • 模型压缩和加速
  • 自适应架构设计
  • 可解释性增强
  • 迁移学习能力提升
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

跳房子的前端

你的打赏能让我更有力地创造

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值