Conda和pip的使用记录

一、创建新的 Conda 环境

conda create -n <环境名> python=<版本号>

🔹 示例:

conda create -n myenv python=3.10

这表示创建一个名为 myenv 的环境,并安装 Python 3.10。


二、激活环境

conda activate myenv

三、安装其他包(可选)

激活环境后,可以使用以下命令安装你需要的库:

使用 conda

conda install numpy pandas matplotlib

使用 pip(适合安装非 Conda 提供的库):

pip install torch torchvision

四、查看已有环境

conda env list
# 或
conda info --envs

五、删除环境(可选)

conda remove -n myenv --all

⚙️ Conda 下载缓慢的解决方案(推荐使用国内镜像)


🔧 方法一:临时使用清华源创建环境

conda create -n label-studio python=3.12 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/

🔧 方法二:永久更换镜像源

1. 配置 Conda 使用清华镜像:
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
conda config --set show_channel_urls yes
2. 验证配置是否生效:
conda config --show

临时使用清华源

在安装 Python 包时,通过 -i 参数指定清华源:

pip install 包名 -i https://pypi.tuna.tsinghua.edu.cn/simple

例如:

pip install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple

此方法仅对当前命令有效。


永久切换到清华源

方法 1:使用 pip config
  1. 升级 pip(确保支持 config 命令):
python -m pip install --upgrade pip
  1. 配置全局镜像源:
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

方法 2:修改配置文件(适用于没有 pip config 命令的环境)

在用户目录下创建或修改配置文件:

  • Linux/macOS~/.pip/pip.conf
  • Windows%APPDATA%\pip\pip.ini

添加以下内容:

[global]
index-url = https://pypi.tuna.tsinghua.edu.cn/simple
### 如何在同一虚拟环境中正确使用 Conda Pip 在一个虚拟环境中同时使用 Conda Pip 是可能的,但也需要注意一些细节来避免潜在的冲突。以下是具体方法以及注意事项: #### 使用 Conda 创建环境并安装依赖 Conda 不仅可以管理 Python 版本,还可以处理复杂的科学计算库及其二进制依赖项。因此,在创建环境时优先使用 Conda。 ```bash conda create -n myenv python=3.8 conda activate myenv ``` 通过上述命令创建名为 `myenv` 的新环境,并指定 Python 版本为 3.8[^1]。 #### 安装主要依赖包 尽可能先使用 Conda 安装大部分依赖包,尤其是那些具有复杂编译需求或者需要特定平台支持的软件包(如 NumPy、Pandas 或 TensorFlow)。这样能减少因手动编译带来的错误风险。 ```bash conda install numpy pandas matplotlib ``` 如果某些包无法通过 Conda 获取,则可以通过 Pip 补充安装这些额外的需求。 #### 结合 Pip 安装剩余依赖 对于 Conda 渠道中不存在或更新不及时的第三方库,可借助 Pip 继续扩展功能集。不过在此之前需确认当前激活的是目标 Conda 环境。 ```bash pip install requests beautifulsoup4 flask ``` 注意:当混合使用两种工具时,请始终确保已激活正确的 Conda 环境;否则可能会导致全局站点目录污染或其他不可预见的问题发生[^2]。 #### 避免路径混乱与版本冲突 为了防止出现路径混淆现象以及降低版本兼容性隐患的风险水平,建议遵循以下原则: - **保持一致性**:尽量统一采用同一种方式完成整个项目的全部依赖注入操作流程; - **记录锁定文件**:利用 `requirements.txt` (针对 Pip) 及/或 `environment.yml`(面向 Conda),保存确切版本号以便日后重现相同开发条件下的运行状态; 例如生成对应的描述文档如下所示: For Pip: ```plaintext # requirements.txt requests==2.25.1 beautifulsoup4==4.9.3 flask==1.1.2 ``` For Conda: ```yaml name: myenv channels: - defaults dependencies: - python=3.8 - numpy - pandas - matplotlib prefix: /path/to/myenv ``` 最后提醒一点就是定期检查是否有可用的新版补丁发布出来可供升级优化性能表现等方面考虑因素进去再做决定是否要执行相应动作即可. ```python import sys print(sys.executable) ``` 以上代码可以帮助验证实际调用解释器的位置是否匹配预期设置好的专属区域范围内去运作程序逻辑过程之中不会受到外界干扰影响正常运转效率效果最佳化程度达到最高标准线之上为止结束本次讨论环节内容部分到这里就圆满完成了谢谢大家的支持配合共同进步成长起来吧!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会点灯的大力水手

科研需要动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值