《Rethinking the Inception Architecture for Computer Vision》的笔记,粗略的记下了比较重要的几点.
论文还有未看完的,这些之后再补充.
设计网络原则
1.避免表征瓶颈。大部分时候,特征大小应当缓慢变小,在变小的同时增加维度。(下采样是减小信息,而升维是增加信息)[以免降维时丢失信息过多]
2.高维特征更容易局部处理,收敛更快。(高维易分)[这里不太明白]
3.空间聚合能通过低维嵌入达到无损。(concat前可以降维,性能损失接近无)
4.平衡宽度和深度。(宽度和深度的比例要合适)
分解卷积
小卷积堆叠
2个3* 3代替1个5*5 减少28%的计算量
有一个问题:
第一个3*3后接线性激活会不会比ReLU更好?
实验结果证明relu更优.(作者猜测是因为网络能够学习这种空间变化的增强,实验证明这是数据增强)
非对称分解
3* 3卷积分解2个2* 2节省11%计算量,而分解成1* 3和3*1节省33%
理论上,任何卷积都能分解成不对称卷积,但实验发现