Inception-V3论文笔记

本文是对《Rethinking the Inception Architecture for Computer Vision》论文的笔记,探讨了Inception-V3的设计原则,如避免表征瓶颈、分解卷积以减少计算量,以及辅助分类器的作用。此外,还提到了通过标签平滑进行模型正则化和在低分辨率输入上的性能优化策略。
摘要由CSDN通过智能技术生成

《Rethinking the Inception Architecture for Computer Vision》的笔记,粗略的记下了比较重要的几点.
论文还有未看完的,这些之后再补充.

设计网络原则

1.避免表征瓶颈。大部分时候,特征大小应当缓慢变小,在变小的同时增加维度。(下采样是减小信息,而升维是增加信息)[以免降维时丢失信息过多]

2.高维特征更容易局部处理,收敛更快。(高维易分)[这里不太明白]

3.空间聚合能通过低维嵌入达到无损。(concat前可以降维,性能损失接近无)

4.平衡宽度和深度。(宽度和深度的比例要合适)

分解卷积

小卷积堆叠

2个3* 3代替1个5*5 减少28%的计算量

有一个问题:

第一个3*3后接线性激活会不会比ReLU更好?

实验结果证明relu更优.(作者猜测是因为网络能够学习这种空间变化的增强,实验证明这是数据增强)

在这里插入图片描述

非对称分解

3* 3卷积分解2个2* 2节省11%计算量,而分解成1* 3和3*1节省33%

在这里插入图片描述

理论上,任何卷积都能分解成不对称卷积,但实验发现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值