【模型压缩】训练时量化--training aware quantization

本文来自谷歌CVPR2018的文章:
Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
代码已经在tensorflow中集成了
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/quantize

前情提要

量化一般分为post-quantization,和training-aware-quantization。

  • post-quantization是直接训练出一个浮点模型直接对模型的参数进行直接量化。这种方法比较常见于对一个大模型进量化,而对小模型会导致大幅度的性能降低。主要原因有两个:1)post-training对参数取值的要求需要比较大的范围。如果参数的取值范围比较小,在量化过程中非常容易导致很高的相对误差。2)量化后的权重中的一些异常的权重会导致模型参数量的降低。

  • training-aware-quantization是在训练中模拟量化行为,在训练中用浮点来保存定点参数,最后inference的时候,直接采用定点参数。

本文的量化方法

量化算法核心在于,将一个浮点数r量化成uint8的q,其中Z为zero point,用于非对称量化(uint8),S为scale,缩放因子(浮点)。
r = S ( q − Z ) r = S(q - Z) r=S(qZ)

量化的数据结构:

template<typename Qtype>     //e.g. uint8
struct QuantizationBuffer{
	vector<Qtype> q;         // 定点
	float S;                 // scale
	Qtype Z;                 // zero-point
}

注意本文对网络的weights进行量化至8位,bias仍然保留32位整数,用于对量化精度的补偿。

对于上图的量化表述:
(a) 测试时量化后的inference计算,uint8代替float去进行矩阵乘法用于加速
(b)训练时,加入Quantization的OP于计算图中,训练过程仍然是浮点计算,通过op去模拟定点。

如何利用uint8进行前向加速

uint8的矩阵乘法要远远要比浮点矩阵乘法高效。从上文知道,一个浮点可以表示为 r = S ( q − Z ) r=S(q-Z) r=S(qZ),两个浮点的乘法为:

S 3 ( q 3 ( i , k ) − Z 3 ) = ∑ j = 1 N S 1 ( q 1 ( i , k ) − Z 1 ) S 1 ( q 1 ( i , k ) − Z 1 ) S_3(q_3^{(i,k)}-Z_3) = \sum^N_{j=1} S_1(q_1^{(i,k)}-Z_1)S_1(q_1^{(i,k)}-Z_1) S3(q3(i,k)Z3)=j=1NS1(q1(i,k)Z1)S1(q1(i,k)Z1)
化简为:
q 3 ( i , k ) = Z 3 + M ∑ j = 1 N ( q 1 ( i , j ) − Z 1 ) ( q 2 ( i , j ) − Z 2 ) q_3^{(i,k)} = Z_3 + M\sum^N_{j=1}(q_1^{(i,j)}-Z_1)(q_2^{(i,j)}-Z_2) q3(i,k)=Z3+Mj=1N(q1(i,j)Z1)(q2(i,j)Z2)
其中 M = S 1 S 2 S 3 M=\frac{S_1S_2}{S_3} M=S3S1S2。对上述进行进一步拆分为:
q 3 ( i , k ) = Z 3 + M ( N Z 1 Z 2 − Z 1 a 2 k − Z 2 a 1 k + ∑ j = 1 N q 1 ( i , j ) q 2 ( j , k ) ) q_3^{(i,k)} = Z_3 + M(NZ_1Z_2-Z_1a_2^k - Z_2a_1^k +\sum^N_{j=1}q_1^{(i,j)}q_2^{(j,k)} ) q3(i,k)=Z3+M(NZ1Z2Z1a2kZ2a1k+j=1Nq1(i,j)q2(j,k))
其中 a 2 k = ∑ j = 1 N q 2 ( j , k ) , a 1 k = ∑ j = 1 N q 1 ( j , k ) a_2^k =\sum^N_{j=1}q_2^{(j,k)}, a_1^k =\sum^N_{j=1}q_1^{(j,k)} a2k=j=1Nq2(j,k),a1k=j=1Nq1(j,k)

那么计算量将大部分留在了uint8的定点乘法:
∑ j = 1 N q 1 ( i , j ) q 2 ( j , k ) \sum^N_{j=1}q_1^{(i,j)}q_2^{(j,k)} j=1Nq1(i,j)q2(j,k), 相比于一开始,我们则不需要进行减法操作,对uint8进行扩充到16位或者以上。

训练时的量化op

当进入量化op时

  1. 第一步进行截断
    c l a m p ( r ; a , b ) = m i n ( m a x ( x , a ) , b ) clamp(r;a,b) = min(max(x,a),b) clamp(r;a,b)=min(max(x,a),b)
  2. 第二步进行非对称量化
    s ( a , b , n ) = b − a n − 1 s(a,b,n) = \frac{b-a}{n-1} s(a,b,n)=n1ba
  3. 第三步将量化后的数据进行浮点化(反量化)
    q ( r ; a , b , n ) = c l a m p ( r ; a , b ) − a s ( a , b , n ) s ( a , b , n ) + a q(r;a,b,n) = \frac{clamp(r;a,b) - a}{s(a,b,n)} s(a,b,n) + a q(r;a,b,n)=s(a,b,n)clamp(r;a,b)as(a,b,n)+a

BN的量化实现

此处对于BN,inference中,我们将BN的权重折合到卷积中。
回忆一下,对于BN的inference:
γ i n p u t − E M A ( μ ) E M A ( σ 2 ) + β \gamma \frac{ input-EMA(\mu)}{\sqrt{EMA(\sigma^2)}}+\beta γEMA(σ2) inputEMA(μ)+β

在量化行为中:
BN的w将折合到卷积中:
w = γ w E M A ( σ 2 ) w = \gamma \frac{w}{\sqrt{EMA(\sigma^2)}} w=γEMA(σ2) w

tensorflow 实现

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值