线性代数_矩阵零空间的维度与奇异值的关系

本文介绍了矩阵零空间的概念及求解方法,并探讨了零空间与矩阵奇异值之间的关系。通过对矩阵进行消元求得主变量和自由变量,进而得到零空间的特解。此外,文章还讲解了如何通过矩阵的奇异值分解来确定零空间的维度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 矩阵的零空间

矩阵A的零空间就Ax=0的解的集合
零空间的求法:对矩阵A进行消元求得主变量和自由变量;给自由变量赋值得到特解;对特解进行线性组合得到零空间。
假设矩阵如下:


对矩阵A进行高斯消元得到上三角矩阵U,继续化简得到最简矩阵R:

由于方程Ax=0的右侧是零向量,所以只对矩阵A进行消元不会影响解,因此不需要增广矩阵,所以有:

从上面的高斯消元的结果可以看出,矩阵A的秩为2,其中第1,3列为主元列,2,4列为自由列,对应于方程主来说,形式转变如下:

 从上式可以看出,x2,x4是自由变量,我们可以随意赋值,
\left\{\begin{matrix} x_2=0\\ x_4=1 \end{matrix}\right. 或者 \left\{\begin{matrix} x_2=1\\ x_4=0 \end{matrix}\right.

可以分别得到两个特解(几个自由变量就有几个特解):

x_1=\begin{bmatrix} -2\\ 1\\ 0\\ 0 \end{bmatrix}x_2=\begin{bmatrix} 2\\ 0\\ -2\\ 1 \end{bmatrix}

然后我们将两组特解进行线性组合就得到了矩阵A的零空间:

x_1=c \begin{bmatrix} -2\\ 1\\ 0\\ 0 \end{bmatrix} + d\begin{bmatrix} 2\\ 0\\ -2\\ 1 \end{bmatrix}

上面我们从数值解的角度描述了矩阵零空间的求法,下面从公式角度分析:
上面我们经过消元( 行变换,不改变行空间和零空间,只改变列空间)得到了最简形式R。我们将R经过列变换得到如下矩阵:

我们可以对方程式作如下变形:


我们之所以进行上述变换,是为了有更好的表示形式(不进行列变换也行,但是要记住哪一列是单位矩阵I中的,哪一列是自由变量矩阵F中的):

 

这样我们代入方程式可以得到零空间矩阵:

 所以,可得:

\bar{x} = \begin{bmatrix} -F_{2\times 2}\\ I_{2\times 2} \end{bmatrix} = \begin{bmatrix} -2 & 2\\ 0 & -2\\ 1& 0\\ 0& 1 \end{bmatrix}

从上面的推导可以看出,得到的零空间矩阵的每一列就是我们前面的特解(注意要变换顺序!交换第2,3行,结果便和前面相同)。因此,我们可以从通过消元法得到最简式R,然后就可以直接得到零空间矩阵,则 零空间就是零空间矩阵各列向量的线性组合,而不需要像前面那样先给x2,x4赋值,然后回代到方程中得到两个特解,从而得到矩阵的零空间。

下面再举一例:

 由于R本来就具有很好的形式,就不用进行列变换了:

于是通过解方程得到零空间矩阵:

 注:最简矩阵R和零空间矩阵x在MATLAB中可以分别用命令rref(A),null(A,'r')得到

2. 矩阵的零空间和奇异值

什么叫做零空间的维度?是未知量x的维度(或者说未知数的个数n)吗?NO.

  • 零空间就是齐次线性方程组Ax=0的全部解,
  • 零空间的基就是基础解系,
  • 零空间的维数n-r(A)n是未知元的个数, r是A的秩.
    • 性质:矩阵的等于矩阵的非零奇异值的个数(注:矩阵的秩不一定等于非零特征值的个数,例如非零的幂零矩阵的所有特征值都为0,但它的秩不为0)
    • 所以:可以采用SVD分解,求出奇异值,奇异值中有几个0,那么零空间的维数就是几。

矩阵A

奇异值分解如下

 S对角线的元素就是奇异值的3个值,零空间则是指Ax=0时,x的取值,有几个基础解系就代表这个零空间有几个维度

如上图,秩为2,因此基础解析个数为 3 - 2 = 1,因此零空间中只有一个基础解系,也代表零空间只有一个维度

参考:

奇异值和零空间_AutoGalaxy的博客-CSDN博客_由奇异值矩阵求零空间

【线性代数】矩阵的零空间_nineheaded_bird的博客-CSDN博客_线性代数零空间

矩阵的奇异值分解 - 知乎 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值