【NLP】使用混合精度技术加速大型语言模型

本文介绍了混合精度训练如何通过在32位和16位精度之间切换,加速深度学习模型的训练,同时降低内存占用。通过PyTorch的Fabric库和混合精度训练,展示了在微调DistilBERT模型时速度和内存的显著改进。此外,还探讨了bfloat16浮点格式和量化技术在推理阶段的作用,以进一步提高效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 🔎大家好,我是Sonhhxg_柒,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流🔎

📝个人主页-Sonhhxg_柒的博客_CSDN博客 📃

🎁欢迎各位→点赞👍 + 收藏⭐️ + 留言📝​

📣系列专栏 - 机器学习【ML】 自然语言处理【NLP】  深度学习【DL】

​​

 🖍foreword

✔说明⇢本人讲解主要包括Python、机器学习(ML)、深度学习(DL)、自然语言处理(NLP)等内容。

如果你对这个系列感兴趣的话,可以关注订阅哟👋

文章目录

了解混合精度训练

使用 32 位精度

从 32 位精度到 16 位精度

混合精度训练机制

混合精度代码示例

微调基准 

张量核和矩阵乘法精度

Brain浮点数

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值