今天我们来解读一篇AI+药学的文献《PharmacyGPT: the Artificial Intelligence Pharmacist and an Exploration of AI for ICU Pharmacotherapy Management》。
这篇文献介绍了一个名为 PharmacyGPT 的创新框架,首次尝试利用大语言模型(LLMs)如 GPT-4 来模拟 ICU 临床药剂师的角色,通过处理真实患者数据,探索其在生成可解释的患者集群、预测患者预后(如死亡率和 APACHE II 评分)以及制定用药计划方面的能力。研究发现,经过动态提示和迭代优化,GPT-4 能展现出一定的潜力,尤其在 APACHE II 评分预测上表现出色,且能生成与实际用药计划有一定相似度的方案。然而,研究也指出了当前 LLMs 在数据依赖性、可解释性、处理复杂临床信息以及遵循 HIPAA 隐私法规等方面的局限性,并提出了改进方向,包括构建药学领域 AI 友好的数据集、开发针对性的评估指标以及探索多模态模型等。总之,该文献为 LLMs 在药学领域的应用开辟了新方向,强调了人机协同的重要性,并为未来实现更智能、更个性化的药物治疗管理提供了宝贵的见解和指导。
下面是该文献的详细解读:
一、引言部分:LLMs 在医疗领域应用的背景与 PharmacyGPT 的提出
-
LLMs 的崛起与医疗领域的机遇: 近年来,大语言模型 (LLMs) 取得了突破性进展,展现出强大的自然语言理解和生成能力。这种能力为医疗领域带来了前所未有的机遇。医疗领域积累了大量的文本数据(如病历、医学文献、临床试验报告等),LLMs 可以从这些数据中学习复杂的医学知识和模式,辅助医生进行诊断、治疗和预后评估。
-
临床药学的复杂性与挑战: 临床药学,尤其是 ICU 环境下的临床药学,是一门高度复杂和专业的学科。ICU 患者病情危重且多变,需要根据患者的具体情况制定个性化的用药方案。这涉及到对患者病理生理状态的深入理解、药物药理学和药代动力学知识的掌握、以及药物相互作用的识别和规避。传统的药物治疗管理模式高度依赖临床药剂师的专业知识和经验,人工审查医嘱不仅耗时耗力,也容易受到人为因素的影响。
-
PharmacyGPT 的创新性: PharmacyGPT 是首个将 LLMs 应用于 ICU 药物治疗管理的研究,具有开创性意义。它探索了 LLMs 在模拟临床药剂师角色方面的可能性,尝试利用 AI 技术辅助药剂师完成患者集群分析、预后预测和用药计划制定等任务。这种尝试为提高 ICU 药物治疗管理的效率和准确性提供了新的思路。
-
研究目标与意义的进一步阐释: 这篇文献不仅仅是为了展示 LLMs 的技术能力,更重要的是引发关于 AI 在药学领域应用模式的思考。通过评估 LLMs 的优势和局限性,可以帮助我们更好地理解如何将 AI 技术与临床实践相结合,实现人机协同,最终提高医疗服务质量。
二、相关工作部分:LLMs 在医疗领域的研究现状与推理能力的探讨
-
Transformer 架构与 LLMs 的分类: 文献回顾了 Transformer 架构及其在自然语言处理领域的革命性影响。Transformer 摒弃了传统的循环神经网络 (RNN) 结构,采用自注意力机制 (Self-Attention Mechanism) 来捕捉文本序列中的长距离依赖关系,从而提高了模型的并行计算能力和学习效率。基于 Transformer 架构的 LLMs 可以分为三类:
-
掩码语言模型 (Masked Language Models, e.g., BERT): 通过掩盖输入序列中的部分词语,并训练模型预测这些被掩盖的词语,从而学习词语之间的上下文关系。
-
自回归语言模型 (Autoregressive Language Models, e.g., GPT): 根据上文预测下一个词语,逐词生成文本序列。
-
编码器-解码器模型 (Encoder-Decoder Models, e.g., BART): 结合了编码器和解码器的优势,可以用于文本生成、翻译等任务。
-
-
LLMs 在医疗领域的具体应用案例: 文献列举了 LLMs 在医疗领域的多个应用案例,展现了其广泛的应用前景:
-
临床分诊分类 (Clinical Triage Classification): 利用 LLMs 对患者的症状描述进行分析,判断患者病情的紧急程度,辅助进行分诊。
-
医学问答 (Medical Question-Answering): 构建基于 LLMs 的医学知识问答系统,为医生和患者提供医学信息咨询服务。
-
HIPAA 合规数据匿名化 (HIPAA-compliant Data Anonymization): 利用 LLMs 对患者的电子病历进行脱敏处理,保护患者隐私。
-
放射学报告总结 (Radiology Report Summarization): 自动生成放射学报告的摘要,方便医生快速了解患者的影像学检查结果。
-
临床信息提取 (Clinical Information Extraction): 从非结构化的临床文本中提取关键信息,如诊断、药物、检查结果等。
-
痴呆症检测 (Dementia Detection): 通过分析患者的语言模式,辅助进行痴呆症的早期筛查。
-
-
LLMs 的推理能力: 文献重点探讨了 LLMs 的推理能力,这是 LLMs 能够应用于临床药学等复杂领域的关键。
-
演绎推理 (Deductive Reasoning): 从一般性的原理推导出特殊性的结论。例如,根据患者的症状和医学知识,推断患者可能的诊断。
-
溯因推理 (Abductive Reasoning): 根据观察到的结果,推断最可能的解释。例如,根据患者的用药情况和临床表现,推断药物不良反应的可能性。
-
思维链 (Chain-of-Thought, CoT): 将复杂问题分解成多个步骤,逐步进行推理。例如,制定用药计划时,可以先评估患者的病情,然后选择合适的药物,最后确定药物的剂量和用法。
-
三、方法部分:PharmacyGPT 的技术细节与算法流程
-
数据来源与预处理:
-
数据来源: 研究使用了来自 UNCHS 的 1000 名 ICU 患者的真实数据,这些患者在 2015 年至 2020 年期间入院,且住院时间至少 24 小时。
-
数据内容: 包括患者的人口统计学信息(年龄、性别、入院诊断、ICU 类型等)、药物管理记录 (MAR) 信息(药物名称、剂量、途径、持续时间、给药时间等)和患者预后信息(死亡率、ICU 住院时间、谵妄发生、机械通气时间、血管加压药使用时间、急性肾损伤等)。
-
数据预处理: 对文本数据进行了清洗和转换,例如将分类特征重新标记为数值,将缺失值视为该事件的缺失。
-
-
可解释的患者集群生成:
-
GPT-3 嵌入 (GPT-3 Embeddings): 将患者信息(年龄、性别、诊断和 ICD10 问题列表)输入 GPT-3,生成 1536 维的嵌入向量。这些向量能够捕捉患者信息的语义特征。
-
层次聚类 (Hierarchical Clustering): 使用生成的嵌入向量作为输入,进行层次聚类分析,将患者分成不同的集群。层次聚类是一种自底向上的聚类方法,它将每个数据点视为一个单独的簇,然后逐步合并最相似的簇,直到所有数据点都被合并成一个簇。
-
算法流程 (Algorithm 1): 详细描述了生成患者集群的步骤,包括生成 GPT-3 嵌入和应用层次聚类算法。
-
-
迭代优化算法:
-
目标: 提高 PharmacyGPT 在生成患者预后预测和用药计划等输出时的性能。
-
核心思想: 基于反馈循环,根据模型的表现不断调整输入提示。
-
算法流程 (Algorithm 2):
-
初始化: 设置迭代次数 (I)、评估分数阈值 (ThreS) 和初始迭代次数 (iter = 0)。
-
定义: GPT 表示 ChatGPT,PromptDy 表示动态提示,PromptIter 表示迭代提示,L 表示评估函数,Mgood 和 Mbad 分别表示将提示与好的和坏的响应合并。
-
迭代过程: 循环执行以下步骤,直到达到最大迭代次数:
-
如果是第一次迭代,则使用动态提示 (PromptDy) 输入 GPT 模型;否则,使用迭代提示 (PromptIter)。
-
根据评估函数 L 计算模型输出 (output) 的分数 (score)。
-
如果分数大于阈值 (ThreS),则使用 Mgood 将提示与输出合并,鼓励模型产生类似的结果;否则,使用 Mbad 将提示与输出合并,避免模型产生类似的结果。
-
迭代次数加 1。
-
-
-
示例: 以生成用药计划为例,初始提示 (Figure 2) 包含患者的人口统计学信息和症状描述。模型生成用药计划后,计算其与实际用药计划的 ROUGE-1 评分。根据评分,修改提示 (Figure 3),例如添加或删除某些药物,或者调整药物的剂量和用法。
-
-
动态提示 (Dynamic Prompting) 的进一步说明: 动态提示是 PharmacyGPT 的关键技术之一。它利用了 LLMs 的上下文学习能力,通过构建包含领域特定数据的动态上下文来提高模型在特定领域的性能。在生成用药计划时,会选择与当前患者相似的 K 个患者信息(例如,年龄、性别、诊断相似)作为提示,并将其与当前患者的信息一起输入模型。这样,模型可以参考类似患者的用药方案,生成更符合当前患者情况的用药计划。
四、结果部分:PharmacyGPT 在各项任务上的表现
-
可解释的患者集群:
-
聚类结果与 ICD-10 编码的一致性: 生成的患者集群与 ICD-10 编码类别高度一致 (Figure 4),表明聚类结果具有良好的可解释性。
-
神经系统疾病患者集群的识别: 一个标记为“具有神经系统影响的多种症状”的集群,表面上看患者症状多样,但通过嵌入分析发现,该集群中的大多数患者都患有神经系统疾病 (Figure 5)。这表明 PharmacyGPT 能够识别患者之间的潜在联系,即使这些联系在表面上并不明显。
-
-
患者预后预测:
-
住院死亡率预测: 使用 ChatGPT 预测住院死亡率,结果表明数据不平衡 (存活患者远多于死亡患者) 会显著降低模型的精确率和 F1 分数 (Table 1)。不同的提示策略对模型性能的提升有限。
-
APACHE II 评分预测: 使用 ChatGPT 和 GPT-4 预测 APACHE II 评分,结果表明 GPT-4 能够显著提高预测的准确性 (Table 2)。精确率,召回率和 F1 分数也得到全面提升。
-
-
用药计划生成:
-
ROUGE 评分: 使用 GPT-4 生成用药计划,并与实际的 24 小时用药计划进行比较,使用 ROUGE 评分进行评估 (Table 3)。PharmacyGPT 的 ROUGE 评分高于 LLAMA2、ChatGPT,但低于优化后的 GPT-4。
-
用药计划示例: Figure 6 展示了一个由 GPT-4 生成的用药计划示例,并与实际的用药计划进行了对比。可以看出,GPT-4 生成的用药计划与实际计划存在一定的相似性,但也存在一些差异,需要由专业药剂师进行评估和修改。
-
五、讨论部分:深入分析与未来展望
-
解决医疗保健领域的 AI 焦虑:
-
黑箱效应与可解释性: LLMs 的“黑箱效应”是阻碍其在医疗领域应用的一个重要因素。医生和患者需要理解 LLMs 的决策过程,才能信任其提供的建议。PharmacyGPT 在可解释的患者集群生成方面进行了探索,但还需要进一步提高 LLMs 的可解释性。
-
LLMs 的局限性: LLMs 无法访问完整的患者病历,难以理解复杂的临床信息或时间序列数据和数值数据,这些局限性限制了其在临床实践中的应用。
-
人机协同: LLMs 可以作为临床药剂师的辅助工具,提供用药建议和风险提示,但不能完全取代药剂师的角色。最终的用药决策仍然需要由药剂师根据患者的具体情况进行判断。
-
-
改进药学领域 LLMs 的建议:
-
领域特定数据训练: 使用大量的药学领域数据训练 LLMs,可以提高其在药学领域的性能。
-
模型架构优化: 针对药学领域的具体任务,优化 LLMs 的模型架构,可以提高其效率和准确性。
-
HIPAA 合规性: 开发本地化的 LLMs,或者采用联邦学习等技术,确保 LLMs 在处理患者数据时符合 HIPAA 隐私保护法规。
-
-
构建药学领域 AI 友好的数据集:
-
更详细的文本信息: 收集更详细的患者病历信息,包括患者病史、治疗方案和病情进展记录。
-
更长的观察时间: 收集更长时间的患者数据,例如超过 24 小时或 72 小时的数据,以便 LLMs 能够更好地理解疾病的进展和治疗效果。
-
标准化的药物描述: 对药物名称、剂量、用法等进行标准化,消除数据中的歧义和不一致性。
-
多数据源整合: 整合电子病历、临床试验结果和医学文献等多种数据来源,为 LLMs 提供更全面的医学知识。
-
-
定义药学领域合适的 NLP 任务和评估指标:
-
药学领域的 NLP 任务: 除了问答和摘要生成等常见的 NLP 任务外,还需要定义更适合药学领域的任务,例如 AI 生成处方和预后预测。
-
药学领域的评估指标: 传统的 NLP 评估指标,如 ROUGE 评分,可能不适用于评估 AI 生成处方的质量。需要开发新的评估指标,例如评估处方的安全性、有效性和经济性。
-
-
开发药学领域的多模态基础模型:
-
多模态学习的优势: 药学领域存在多种类型的数据,例如文本数据、数值数据和图像数据。多模态学习可以整合这些不同类型的数据,为 LLMs 提供更全面的患者信息。
-
Transformer 架构的适用性: Transformer 架构可以处理多种类型的序列数据,适合用于构建药学领域的多模态模型。
-
多模态模型的构建: 可以为每种类型的数据构建独立的输入通道,然后将不同通道的输出进行融合,生成一个综合的患者表示。
-
六、总结与展望:
PharmacyGPT 项目为 LLMs 在 ICU 药物治疗管理中的应用提供了概念验证。尽管目前还存在许多挑战和局限性,但 LLMs 在提高药物治疗管理的效率和准确性方面展现了巨大的潜力。未来的研究方向包括:
-
开发更强大的 LLMs,提高其在药学领域的性能。
-
构建更完善的药学领域数据集,为 LLMs 提供更丰富的训练数据。
-
开发更有效的评估指标,客观地评估 LLMs 在药学领域的表现。
-
探索人机协同的最佳模式,将 LLMs 与临床药剂师的专业知识相结合。
-
开发多模态模型,整合不同类型的患者数据,为 LLMs 提供更全面的患者信息。
通过不断的研究和探索,我们有望将 LLMs 真正应用于临床实践,为患者提供更安全、更有效、更个性化的药物治疗方案。
往期内容荐读:
ChatGPT 在临床药学中的有效性以及人工智能在药物治疗管理中的作用
DDI-GPT:使用知识图谱增强的大模型对药物相互作用进行可解释的预测
诺奖得主David Baker最新Science论文:药学+AI领域迎来新机遇!
AI与药学:ChatGPT与临床培训——药学博士(Pharm-D)学生的看法、担忧和实践
人工智能大模型在用药处方审核的应用潜力:一项跨 12 个临床专科的前瞻性研究
欢迎关注公众号“赛文AI药学”!
赛文AI药学,致力于探索人工智能在药学场景中的创新与应用,聚焦药师的AI赋能与专业素养提升。我们提供前沿的AI技术动态、实用的药学场景案例分享以及个性化学习资源,助力药师在智能化时代实现价值跃升。