大语言模型(LLMs)在药物相互作用研究中的应用正成为药物发现、临床治疗优化和个性化医疗领域的一个重要方向。(关注公众号 “赛文AI药学”,获取更多AI与药学的内容)
1. 药物相互作用预测
LLMs已经成为药物相互作用(Drug-Drug Interaction, DDI)预测领域的重要工具之一。传统的药物相互作用研究主要依赖于实验数据和规则引擎,然而这种方法效率较低且难以处理大规模的药物数据。随着LLMs的引入,研究者能够利用这些模型从大规模的药物数据中学习到药物之间潜在的相互作用模式。
一种典型的应用是通过构建药物分子与适应症之间的翻译任务来预测药物的相互作用。在这种方法中,药物分子被表示为一个序列(例如,SMILES字符串或分子图),LLM通过预训练学习药物分子和其对应的适应症(治疗病症)之间的映射关系。例如,基于T5模型的LLMs在DrugBank和ChEMBL这类大规模数据集上进行预训练和微调,取得了显著的效果,在药物适应症预测任务中表现优异。这一方法不仅有助于药物相互作用的识别,还可以加速新药物的发现过程。
相关文献:
- Yujin Han, Zhen Cheng, "Emerging opportunities for using large language models for translation between drug molecules and indications",2024年2月14日。
2. 分子关系建模
LLMs在分子关系建模中的应用更为广泛,尤其是在复杂的分子相互作用研究中。分子之间的关系,如蛋白质-蛋白质相互作用(PPI)、药物-药物相互作用(DDI)和化学反应等,通常包含了极其复杂的结构信息。这些信息不仅仅体现在分子序列的层面,还包括分子的空间结构和化学反应动力学。
通过预训练的LLMs,研究者能够高效地处理这些复杂的分子关系数据集。例如,研究者使用的LLM模型可以对大规模的药物和蛋白质数据进行建模,并捕捉分子间相互作用的隐含关系。通过这种方式,LLMs不仅能够理解单个药物分子的特性,还能够揭示多种药物和靶点之间的交互作用。例如,基于T5模型的LLM,在处理蛋白质-蛋白质相互作用(PPI)和药物-药物相互作用(DDI)任务时,都展现出了显著的优势。
相关文献:
- Junfeng Fang, Shuai Zhang, Chang Wu, Zhengyai Liang, Zhiyuan Liu, Sihang Li, Wenjie Du, Wang Xiang, "MolTC: Towards Molecular Relational Modeling in Language Models",2024年2月6日。
3. 药物相互作用识别
LLMs的另一项重要应用是药物相互作用的自动识别。通过结合SMILES(Simplified Molecular Input Line Entry System)字符串,LLMs能够有效地识别不同药物分子之间的相互作用。SMILES是一种通过线性字符来表示分子结构的简化方法,LLMs能够在这些字符序列中捕捉到药物分子之间的潜在相互作用信息。
实验结果表明,LLMs(如GPT模型)结合SMILES字符串进行药物相互作用识别时,比传统的SMILES字符串方法表现更为优异。在BioSnap数据集上的实验中,GPT模型在AUROC(接收者操作特征曲线)和AUPRC(精度-召回曲线)指标上均取得了更高的性能,这表明LLMs在药物相互作用识别任务中具有较强的潜力。
相关文献:
- Shaghayegh Sadeghi, Alan Bui, Ali Forooghi, Jianguo Lu, Ali Omneilou, "Can large language models understand molecules?",2024年1月5日。
4. 药物-靶点相互作用预测
LLMs不仅在药物-药物相互作用预测中表现出色,它们还可以用于药物-靶点相互作用(Drug-Target Interaction, DTI)的预测。在这种任务中,LLMs通过解析药物分子和生物靶点(如蛋白质)之间的关系,帮助研究者更好地理解药物的作用机制。
研究表明,基于LLMs的药物-靶点相互作用预测模型能够有效地识别药物与蛋白质靶点之间的相互作用。这种方法的优势在于,LLMs能够通过预训练模型理解药物和靶点的特性,而不需要依赖于复杂的3D结构计算。与直接使用3D蛋白质表示的传统方法相比,LLMs能够处理更大规模的数据集,并在多个关键指标上取得更好的结果。
相关文献:
- Anuj D., "LEP-AD: Language Embedding of Proteins and Drugs Predicts Drug Target Interactions",2023年3月15日。
5. 药物相互作用研究的挑战与未来方向
尽管LLMs在药物相互作用研究中展示了巨大潜力,但仍面临一些挑战。首先,尽管LLMs可以高效地处理大规模的药物数据集,但在一些特定任务中,它们的性能仍然可能不如专门为该任务设计的模型。例如,LLMs在预测药物适应症时可能生成不够准确的结果,需要进一步优化模型的参数。
此外,随着药物数据集的日益庞大,LLMs的计算资源需求也不断增加。未来的研究可以探索更大规模的预训练模型,提升其处理复杂药物相互作用的能力。同时,结合药物数据的多模态(如分子结构、药理学数据和临床实验数据)将是未来药物相互作用研究的一个重要方向。
未来研究方向:
- 优化LLMs的生成能力,提升药物相互作用预测的准确性。
- 开发大规模的预训练模型,适应更加复杂的药物相互作用数据。
- 探索药物数据的多模态学习方法,提升药物相互作用研究的深度和广度。
大语言模型在药物相互作用研究中展现出了巨大的应用潜力,从药物适应症的翻译任务到药物-靶点相互作用的预测,再到药物相互作用的自动识别,LLMs都在加速药物发现和个性化医疗的进程。然而,随着技术的不断发展,仍有许多挑战需要克服,未来的研究将进一步推动LLMs在药物研究中的应用。
往期内容荐读:
ChatGPT 在临床药学中的有效性以及人工智能在药物治疗管理中的作用
DDI-GPT:使用知识图谱增强的大模型对药物相互作用进行可解释的预测
诺奖得主David Baker最新Science论文:药学+AI领域迎来新机遇!
AI与药学:ChatGPT与临床培训——药学博士(Pharm-D)学生的看法、担忧和实践
人工智能大模型在用药处方审核的应用潜力:一项跨 12 个临床专科的前瞻性研究
AI用于研究药物扩大适应症:大模型架起药物分子结构与适应症的桥梁
AI与药学:DrugGPT助力减少英国每年2.37亿次用药错误
CancerGPT :基于大语言模型的罕见癌症药物对协同作用少样本预测研究
AI与药学|DAPSNet:基于双重注意力机制和患者相似性的药物推荐模型
AI与药学| Nature Medicine:大模型MEDIC显著降低药店用药指导错误
AI与药学:基于大模型的多智能体药物不良事件提取系统—MALADE
FastRx:基于 Fastformer 和记忆增强图神经网络的个性化用药推荐模型
AI与药学 | Med-Pal:轻量级大型语言模型在药物咨询领域的应用
AI与药学|当AI遇上老药新用,DrugReAlign—基于大模型的多源提示药物重定位框架
AI与药学 | 大模型赋能用药处方:迈向更清晰、个性化、无偏见的用药指导新时代
欢迎关注公众号“赛文AI药学”!
赛文AI药学,致力于探索人工智能在药学场景中的创新与应用。