CSDN笔记

本文探讨了拉普拉斯变换在控制系统分析中的作用,重点在于收敛域(ROC)、逆变换(ILT)和传递函数。介绍了稳定性的判断依据,强调通过控制系统的极点分布来确保系统输出的稳定性。分析了不同极点位置对系统稳定性的影响,指出实部为负的极点对应系统稳定,实部为正则系统发散。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

拉普拉斯变换的收敛域(ROC)与逆变换(ILT)

1.是否可积即是否收敛(如果可收敛,面积/拉氏值即为收敛域)

(1)收敛的条件:e^(-jwt)积分为振荡函数

(2)常系数线性微分方程对应线性时不变系统,其分析步骤有三:

(3)拉氏逆变换(ILT)的方法:

传递函数的极点:s=-4,s=-1;

求解过程中令s=-4,s=-1解出A,B;

1.化简时采用欧拉公式的两个变形形式(要熟记!)进行化简,即为e^(i*狗)=cos(狗)+isin(狗);

 传递函数(Transfer Function)与拉普拉斯变换

1.传递函数的推导

(1)卷积可以简单的理解为叠加的状态在未消失时再次叠加

 2.令u(t)=c时,u(t)=ce^(0),继续推导如下:

 

 将x(t)作图可得:

 由图可知x(t)是在一个范围内衰减的,观察e的指数0,-g/R,发现令u(s)*g(s)的分母部分=0时,得到极点s1=0,s2=-g/R,因此可得重要结论:通过控制系统极点,来控制系统输出。

 

稳定性分析 

由第一节可知开环闭环系统响应如下,给系统输入单位冲击响应就可以判断系统的稳定性,单位冲击响应的拉普拉斯变换是1,所以X(s)=G(s),对系统的稳定性分析变为对系统传递函数的分析。

 传递函数分子为零的点为零点,分母为零的点为极点

 从下图可以看出来,由于极点的正负,可以影响系统的稳定性

共轭复根的实部是负的,其输出函数为e^(-t)sin⁡(t+∅)。sin⁡(t+∅)和这两个函数相乘会趋于稳定,同理,如果实部为正,会让系统发散,为零则处于临界状态

 总结如下图为:如果极点为实数,落在左半平面稳定(红色),右半平面(蓝色)发散;如果为一对共轭复根,落在左半平面(棕色)一边震荡一边稳定,右半平面(绿色)一边震荡一边收敛;如果只有虚部(黄色),就是震荡的响应

所以,在设置控制器D的时候,是需要控制器的极点再左半平面,在现代控制理论中,研究的是状态矩阵的特征值,这些特征值实际上就对应着极点

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值