机器学习基石 - Linear Models for Classification

版权声明:学习时的觉得有必要记录下来的知识点,与君共勉 https://blog.csdn.net/sinat_27421407/article/details/82185454

机器学习基石下 (Machine Learning Foundations)—Mathematical Foundations
Hsuan-Tien Lin, 林轩田,副教授 (Associate Professor),资讯工程学系 (Computer Science and Information Engineering)

Linear Models for Binary Classification

  • ys: classification correctness score 分类正确性分数

  • Visualizing Error Functions

    这里写图片描述

  • small EinCE(w)small Eout0/1(w)

    logistic/linear reg. for linear classification

  • linear regression sometimes used to set w0 for PLA/pocket/logistic regression

  • logistic regression often preferred over pocket

Stochastic Gradient Descent

  • stochastic gradient = true gradient + zero-mean ‘noise’ directions
    这里写图片描述
  • two practical rule-of-thumb:
    • stopping condition? t large enough
    • η? 0.1 when x in proper range

Multiclass via Logistic Regression

  • One Class at a Time Softly 属于某个类别的概率

  • One-Versus-All (OVA) Decomposition

    这里写图片描述

Multiclass via Binary Classification

  • One-versus-one (OVO) Decomposition

    这里写图片描述

    voting of classifiers

展开阅读全文

没有更多推荐了,返回首页