DeepSeek和ChatGPT‑4到底怎么选?

个人简介
在这里插入图片描述
作者简介:全栈研发,具备端到端系统落地能力,专注大模型的压缩部署、多模态理解与 Agent 架构设计。 热爱“结构”与“秩序”,相信复杂系统背后总有简洁可控的可能。
我叫观熵。不是在控熵,就是在观测熵的流动
个人主页:观熵
个人邮箱:privatexxxx@163.com
座右铭:愿科技之光,不止照亮智能,也照亮人心!

专栏导航

观熵系列专栏导航:
AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到AI在行业中的落地应用,我们将深入剖析最前沿的AI技术,分享实用的开发经验,并探讨AI未来的发展趋势
AI开源框架实战:面向 AI 工程师的大模型框架实战指南,覆盖训练、推理、部署与评估的全链路最佳实践
计算机视觉:聚焦计算机视觉前沿技术,涵盖图像识别、目标检测、自动驾驶、医疗影像等领域的最新进展和应用案例
国产大模型部署实战:持续更新的国产开源大模型部署实战教程,覆盖从 模型选型 → 环境配置 → 本地推理 → API封装 → 高性能部署 → 多模型管理 的完整全流程
TensorFlow 全栈实战:从建模到部署:覆盖模型构建、训练优化、跨平台部署与工程交付,帮助开发者掌握从原型到上线的完整 AI 开发流程
PyTorch 全栈实战专栏: PyTorch 框架的全栈实战应用,涵盖从模型训练、优化、部署到维护的完整流程
深入理解 TensorRT:深入解析 TensorRT 的核心机制与部署实践,助力构建高性能 AI 推理系统
Megatron-LM 实战笔记:聚焦于 Megatron-LM 框架的实战应用,涵盖从预训练、微调到部署的全流程
AI Agent:系统学习并亲手构建一个完整的 AI Agent 系统,从基础理论、算法实战、框架应用,到私有部署、多端集成
DeepSeek 实战与解析:聚焦 DeepSeek 系列模型原理解析与实战应用,涵盖部署、推理、微调与多场景集成,助你高效上手国产大模型
端侧大模型:聚焦大模型在移动设备上的部署与优化,探索端侧智能的实现路径
行业大模型 · 数据全流程指南:大模型预训练数据的设计、采集、清洗与合规治理,聚焦行业场景,从需求定义到数据闭环,帮助您构建专属的智能数据基座
机器人研发全栈进阶指南:从ROS到AI智能控制:机器人系统架构、感知建图、路径规划、控制系统、AI智能决策、系统集成等核心能力模块
人工智能下的网络安全:通过实战案例和系统化方法,帮助开发者和安全工程师识别风险、构建防御机制,确保 AI 系统的稳定与安全
智能 DevOps 工厂:AI 驱动的持续交付实践:构建以 AI 为核心的智能 DevOps 平台,涵盖从 CI/CD 流水线、AIOps、MLOps 到 DevSecOps 的全流程实践。
C++学习笔记?:聚焦于现代 C++ 编程的核心概念与实践,涵盖 STL 源码剖析、内存管理、模板元编程等关键技术
AI × Quant 系统化落地实战:从数据、策略到实盘,打造全栈智能量化交易系统
大模型运营专家的Prompt修炼之路:本专栏聚焦开发 / 测试人员的实际转型路径,基于 OpenAI、DeepSeek、抖音等真实资料,拆解 从入门到专业落地的关键主题,涵盖 Prompt 编写范式、结构输出控制、模型行为评估、系统接入与 DevOps 管理。每一篇都不讲概念空话,只做实战经验沉淀,让你一步步成为真正的模型运营专家。


前言

近年来,随着深度学习和大规模预训练技术的迅速发展,自然语言处理(NLP)领域正在经历前所未有的变革。从早期依赖规则和统计方法的传统 NLP 模型,到如今基于 Transformer 的大规模预训练模型,技术进步使得机器能够更好地理解、生成甚至交互自然语言。ChatGPT‑4 和 DeepSeek 分别代表了对话生成和语义检索的最新前沿:前者在智能客服、内容创作和多模态交互等应用场景中表现出色;后者则在知识管理、智能问答和跨领域搜索等领域展现巨大潜力。本文将深入解析这两类模型的内部技术细节与应用场景,同时面向初学者和软件从业人员提供快速上手指南,并对两者进行全面对比和未来趋势展望。


ChatGPT‑4 模型详解

整体架构概述

ChatGPT‑4 是基于 Transformer 架构的生成式预训练模型,其主要结构可分为以下几大模块:

  • 输入预处理模块:将原始文本转换为 Token 序列。
  • 嵌入层与位置编码:将 Token 映射到低维向量,并加入位置编码保证顺序信息。
  • 堆叠 Transformer 层:由多个 Transformer 层构成,每层包含多头自注意力、前馈网络、残差连接和层归一化。
  • 输出层:将最后一层的输出映射到词表维度,并通过 Softmax 得到概率分布,用于生成下一个 Token。
  • RLHF 微调模块:在预训练之后,通过人类反馈进行强化学习微调(Reinforcement Learning from Human Feedback),使生成内容更符合实际对话需求和伦理要求。

这种架构使 ChatGPT‑4 能够在大规模数据上预训练出丰富的语言表示,并在微调阶段进一步优化生成质量。

输入预处理与嵌入层

  1. Tokenizer
    使用先进的子词分割技术(如 Byte-Pair Encoding 或 WordPiece),将输入文本分割为基本单元。

  2. 词嵌入
    将每个 Token 映射为固定维度的向量 ( e_i \in \mathbb{R}^d )。

  3. 位置编码
    为保证序列信息,使用正弦余弦位置编码,其公式为:

    P E ( p o s , 2 i ) = sin ⁡ ( p o s 1000 0 2 i d ) , P E ( p o s , 2 i + 1 ) = cos ⁡ ( p o s 1000 0 2 i d ) . PE_{(pos,2i)} = \sin\left(\frac{pos}{10000^{\frac{2i}{d}}}\right), \quad PE_{(pos,2i+1)} = \cos\left(\frac{pos}{10000^{\frac{2i}{d}}}\right). PE(pos,2i)=sin(10000d2ipos),PE(pos,2i+1)=cos(10000d2ipos

### 比较DeepSeekChatGPT的功能差异与相似之处 #### 功能差异 ##### 训练数据与时效性 DeepSeek基于最新的研究进展进行了特定版本的微调,例如针对GPT3.5Llama2 13B的优化调整[^1]。相比之下,ChatGPT的基础架构依赖于更早发布的GPT系列模型,在训练数据的时间范围上可能不如DeepSeek那样具有时效性针对性。 ##### 性能评估标准 在性能评测方面,对于某些实验设置,采用的是不同版本的GPT4作为评判依据,这表明DeepSeek可能会根据不同应用场景择最合适的评价体系来展示其优势。而ChatGPT则通常遵循固定的评估框架,较少涉及动态变化的标准。 #### 功能相似性 ##### 基础技术原理 两者都建立在大型预训练语言模型之上,能够理解生成自然语言文本。这种共同的技术背景使得它们都能胜任诸如问答、对话模拟等多种NLP任务。 ##### 应用场景广泛度 无论是DeepSeek还是ChatGPT,都可以应用于广泛的领域内解决实际问题,比如客服支持、教育辅导等。这些应用得益于二者强大的语义理解能力灵活的内容创作能力。 ```python # Python伪代码示例用于说明两个系统的通用接口设计模式 class BaseLanguageModel: def generate_response(self, prompt): pass class DeepSeek(BaseLanguageModel): def __init__(self): self.model_version = "latest" def generate_response(self, prompt): # 使用最新微调后的参数处理输入提示并返回响应 return f"Response generated by {self.__class__.__name__}" class ChatGPT(BaseLanguageModel): def __init__(self): self.model_version = "standard" def generate_response(self, prompt): # 根据原始配置处理输入提示并返回响应 return f"Response generated by {self.__class__.__name__}" ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

观熵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值