从 NVIDIA 到昇腾的模型迁移实录:框架转换、模型调优与推理部署全流程分享

从 NVIDIA 到昇腾的模型迁移实录:框架转换、模型调优与推理部署全流程分享

📄 摘要

在当前 AI 应用私有部署、多平台适配趋势下,越来越多企业和开发者开始关注国产 AI 芯片的工程落地能力。
本文将从一个工程实践者的角度,详细分享我将 LLM 模型部署从 基于 NVIDIA 显卡的 CUDA + PyTorch 环境,迁移到 昇腾 910B 芯片 + MindSpore 框架的全过程。

这不是“理论流程总结”,而是一次真实发生的迁移实践,其中包括:

  • 模型格式转换过程中的踩坑和兼容性问题
  • 昇腾推理环境配置的注意事项与调试经验
  • PyTorch 与 MindSpore 在执行逻辑、数据输入、图构建上的主要差异
  • 多进程部署、多卡调度、接口封装与性能优化的实战策略

如果你正在适配国产平台,或计划将 HuggingFace 模型部署到昇腾环境,本文将提供一份“工程向迁移备忘录”,帮你避坑提效,提升落地交付能力。


📚 文章目录

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

观熵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值