从 NVIDIA 到昇腾的模型迁移实录:框架转换、模型调优与推理部署全流程分享
📄 摘要
在当前 AI 应用私有部署、多平台适配趋势下,越来越多企业和开发者开始关注国产 AI 芯片的工程落地能力。
本文将从一个工程实践者的角度,详细分享我将 LLM 模型部署从 基于 NVIDIA 显卡的 CUDA + PyTorch 环境,迁移到 昇腾 910B 芯片 + MindSpore 框架的全过程。
这不是“理论流程总结”,而是一次真实发生的迁移实践,其中包括:
- 模型格式转换过程中的踩坑和兼容性问题
- 昇腾推理环境配置的注意事项与调试经验
- PyTorch 与 MindSpore 在执行逻辑、数据输入、图构建上的主要差异
- 多进程部署、多卡调度、接口封装与性能优化的实战策略
如果你正在适配国产平台,或计划将 HuggingFace 模型部署到昇腾环境,本文将提供一份“工程向迁移备忘录”,帮你避坑提效,提升落地交付能力。