
国产 NPU × Android 推理优化
文章平均质量分 97
本专栏系统解析 Android 平台国产 AI 芯片实战路径,涵盖 NPU×NNAPI 接入、异构调度、模型缓存、推理精度、动态加载与多模型并发等关键技术,聚焦工程可落地的推理优化策略,适用于边缘 AI 开发者与系统架构师。
观熵
走在AI与场景融合的前线,关注技术演进、产品迭代与智能时代的创新创业机会。
展开
-
Android NNAPI 模型稳定性测试实战指南:全链路验证方法与故障分析机制详解
随着 Android 端 AI 推理在终端应用中的快速部署,NNAPI 成为主流推理加速接口。但在实际落地中,模型运行的稳定性远比性能更具挑战性,尤其在多芯片、多任务、高并发环境下更易触发推理失败、资源泄露或硬件不兼容等问题。本文基于真实工程经验,系统梳理 NNAPI 模型稳定性测试的评估体系、全链路自动化测试框架设计、故障回溯与根因分析机制,并提供跨厂商芯片环境下的异常标记与容错设计策略,帮助工程团队构建更稳健的边缘 AI 推理系统。原创 2025-06-08 22:30:00 · 680 阅读 · 0 评论 -
模型结构 × Runtime 架构兼容矩阵设计与评估体系:国产芯片端到端部署适配全景指南
随着大模型向终端侧迁移的趋势加速,不同模型结构在各类 AI 芯片 Runtime 架构下的执行兼容性成为影响部署效率与性能的核心因素。无论是 ResNet、MobileNet 等传统图像模型,还是 BERT、ViT 等复杂结构,其在 NNAPI、TFLite、ONNX Runtime、自研 SDK 等 Runtime 体系下的表现千差万别。本文基于 2025 年国产主流芯片(地平线、寒武纪、天数智芯)平台最新适配结果,系统构建“模型结构 × Runtime 架构”兼容性评估矩阵,从结构识别、执行路径判定、性原创 2025-06-06 20:49:56 · 824 阅读 · 0 评论 -
动态图模型转换为静态 NNAPI 图的方式与结构简化:国产终端部署中的工程实践与路径优化指南
在国产 AI 芯片生态不断壮大的背景下,大量模型开始部署至支持 NNAPI 的 Android 终端设备上。然而主流模型框架(如 PyTorch、TensorFlow)在开发阶段普遍采用动态图结构,这与 NNAPI 所需的静态计算图执行模式存在天然不兼容,严重影响模型的部署成功率与运行性能。本文面向实际工程落地需求,系统梳理并实战解析了动态图模型向静态 NNAPI 图结构的转换路径,涵盖 PyTorch → ONNX → TFLite 的转换注意事项、控制流结构展开、动态张量重写、结构融合与简化、以及国产芯原创 2025-06-06 10:08:05 · 925 阅读 · 0 评论 -
使用自研算子插桩调试加速 NPU 性能 Profiling:架构实现与平台实战路径全解析
在异构 AI 芯片加速场景下,传统的 profiling 手段已难以满足对低延迟、高吞吐模型在 NPU 上的精细化性能剖析需求。为解决该问题,本文围绕“自研算子插桩”技术,系统讲解如何构建一套轻量级、可移植、高精度的算子级 profiling 调试体系,深度解析其在主流 NPU 架构(如华为 Ascend、瑞芯微 RK3588、地平线旭日 V 系列等)上的落地路径。全文以实战为主,包含代码片段、系统调度链集成与 trace 可视化策略,帮助读者构建面向 NPU 的高性能诊断能力体系。原创 2025-06-05 22:15:16 · 652 阅读 · 0 评论 -
自定义模型转化流程:ONNX → TFLite → NNAPI 调优全流程实战指南
ONNX 模型格式作为当前主流的跨框架交换标准,广泛应用于 PyTorch、MXNet 等模型训练后的导出格式。然而,直接将 ONNX 模型部署到 Android 终端存在算子兼容性、量化策略、执行性能等诸多挑战。本文以真实工程实践为核心,系统梳理 ONNX → TFLite → NNAPI 的模型转换与优化流程,涵盖算子映射、子图构建、量化策略、Delegate 支持分析、国产芯片适配调试、结构融合与部署验证等完整链路,提供高度工程化、具备可落地能力的 NNAPI 模型迁移与部署方案。原创 2025-06-05 21:46:23 · 612 阅读 · 0 评论 -
模型裁剪 / 剪枝 / 低秩分解后的 NNAPI 部署验证流程:移动端推理模型轻量化与部署一致性实战解析
随着移动端 AI 应用对响应速度与功耗控制要求提升,轻量化已成为主流模型优化方向。裁剪(Pruning)、低秩分解(Low-Rank Decomposition)等结构优化方法可有效减少参数量与计算量,但优化后的模型在 NNAPI 路径下部署面临算子支持断层、推理结果不一致、动态维度不兼容等系列挑战。本文以实战为导向,围绕主流剪枝与分解技术的部署流程展开,详细拆解其在 TFLite/ONNX → NNAPI 的端侧验证机制,结合国产芯片平台如地平线、寒武纪、天数智芯等的实际表现,输出可复用的部署验证模板与一原创 2025-06-05 21:21:50 · 871 阅读 · 0 评论 -
厂商自定义 HAL Feature 标志位控制机制研究:跨平台兼容性与性能协同策略实战
随着 Android 平台在 AI 端侧推理、图像处理、传感控制等方向的快速演进,越来越多 SoC 厂商在 HAL(Hardware Abstraction Layer)中引入自定义 Feature 标志位,以实现平台级功能动态启用、性能差异化调度与能力级联控制。本篇实战文章以华为、联发科、展锐等主流 SoC 平台为案例,深入解析厂商自定义 HAL Feature 机制的注册路径、系统控制链、状态同步与跨版本兼容设计,剖析 Feature Bit 位在 Android 系统服务、Vendor NPU SDK原创 2025-06-05 18:30:01 · 670 阅读 · 0 评论 -
CPU ↔ NPU ↔ DSP 跨计算单元调度失败恢复机制实战详解:异构执行链路的故障检测与自愈体系构建
在边缘端及终端设备上,AI 推理往往依赖 CPU、NPU、DSP 等异构计算单元协同完成。但在实际部署中,跨计算单元的任务调度极易因硬件资源争用、算子支持缺失、内存拷贝失败或执行异常而中断。本文基于2025年最新主流国产平台(如寒武纪、地平线、MediaTek APU、高通 Hexagon、UNISOC VDSP 等)真实部署实践,系统讲解 CPU ↔ NPU ↔ DSP 调度路径中各类失败的类型、触发机制与恢复策略,重点介绍执行路径的“自感知切换”与“回滚补偿机制”设计,提出一套统一的异构容错调度架构模板原创 2025-06-05 17:25:27 · 898 阅读 · 0 评论 -
Android NNAPI 模型部署全流程实战指南:CI/CD 构建、自动测试与性能优化全景解析
本篇文章聚焦 Android 端神经网络推理加速框架 NNAPI 的企业级部署实践,系统梳理了模型从训练导出、格式转换、NNAPI 编译优化到终端部署测试的完整流程,重点讲解如何构建跨平台 CI/CD 自动化测试链路,保障多 SoC 芯片兼容性与性能稳定性。文中将以最新国产 AI 芯片数据为基础,结合真实项目落地经验,输出完整部署架构图、自动化测试脚本范例与性能评估标准体系。适合所有希望构建高效 Android AI 推理平台的架构师与开发团队参考使用。原创 2025-06-05 16:04:17 · 525 阅读 · 0 评论 -
FP16 混合精度在移动端 NPU 上的支持与性能压榨路径:架构差异 × 模型兼容 × 工程落地全解析
随着国产 NPU 芯片在手机、边缘端等设备的广泛部署,FP16(Half Precision Floating Point)因其在计算效率、内存带宽、功耗方面的综合优势,已成为移动 AI 推理主流的数据类型之一。与传统 INT8 量化不同,FP16 混合精度部署更侧重于保持模型结构完整性与较高精度下的推理加速,但也面临芯片架构差异、算子支持不一致、模型兼容性不足等挑战。本文围绕 FP16 混合精度在移动端 NPU 上的支持状况、落地路径与性能压榨实践展开系统分析,涵盖模型转换策略、子图调度优化、平台适配经验原创 2025-06-05 13:05:20 · 834 阅读 · 0 评论 -
构建高可信推理性能全量评估体系:启动时间、单批延迟与吞吐量的系统化分析实践
在边缘侧大模型部署和 NNAPI 推理框架优化实践中,准确衡量模型性能已不再局限于单一延迟值。本文基于 2025 年最新 Android SoC 与 AI 推理引擎实践经验,系统化构建了覆盖启动时间、运行时延、批量吞吐量的全量性能评估体系。结合实际部署样本,我们将深入剖析指标定义方法、跨设备一致性处理、场景模拟加载测试与多维对比分析机制,并实战部署完整的性能采集 + 指标分析 + 报警监控 + 可视化系统,提供端到端闭环能力。文章适用于 AI 芯片厂商、模型推理优化工程师、设备 AI 能力验证团队及平台侧原创 2025-06-05 11:49:29 · 892 阅读 · 0 评论 -
Vision Transformer 在国产芯片上的模型拆解方案:结构重构、模块适配与推理部署实战指南
Vision Transformer(ViT)作为图像任务中的 Transformer 架构代表,在分类、检测、分割等任务中展现出超越 CNN 的泛化能力。然而其在部署至国产芯片平台(如昇腾、寒武纪、地平线、天数智芯)时,面临 Patch Embedding 结构不兼容、多层 Attention 模块图编译失败、高维张量不支持等严峻挑战。本文结合截至 2025 年 5 月的最新平台生态与部署实践,系统拆解 ViT 核心模块的结构形式,分析各平台支持差异,提出模块级重构与推理优化路径,并通过实际案例验证 Vi原创 2025-06-05 11:15:19 · 619 阅读 · 0 评论 -
手机端 AI 推理能耗评估与动态频率控制机制实战指南:模型性能 × 芯片功耗 × 电源管理的三角均衡策略
随着 AI 推理在手机端应用的加速普及,如何在保证性能的同时控制功耗,成为移动端 AI 工程优化中的关键问题。本文以真实 SoC 平台(如 MTK Dimensity、Qualcomm Snapdragon、RK3588S)为基础,系统梳理 AI 模型在端侧推理中的能耗评估体系与动态频率控制机制(DVFS),深入解析 SoC 级别功耗采集路径、NPU 与 CPU/GPU 协同能效管理策略、模型推理场景下的功耗曲线测试方法,并给出工程级实战优化案例与调试路径,为构建高性能低能耗的边缘 AI 系统提供可复现的实原创 2025-06-05 09:55:58 · 1003 阅读 · 0 评论 -
LSTM/RNN 模型结构的 NNAPI 部署挑战与规避策略:终端设备推理适配与工程实践路径
LSTM 与 RNN 等循环神经网络因其优秀的时序建模能力,在语音识别、嵌入式理解、实时预测等场景中仍具重要应用价值。然而由于其复杂的状态维持机制与循环结构,导致在 Android NNAPI 框架下的部署面临诸多挑战,尤其在不具备原生循环支持能力的终端推理平台上,易出现推理失败、中间状态断裂、输入张量冲突等问题。本文系统分析 LSTM/RNN 在 NNAPI 部署过程中的典型难点,覆盖标准规范支持状况、模型结构重构策略、张量布局优化、Delegate 替代与异构执行路径等核心内容,并通过完整的工程案例提供原创 2025-06-03 12:15:00 · 793 阅读 · 0 评论 -
NNAPI Execution Trace 日志解析与 Profile 报告可视化实战指南
本文聚焦于 Android 平台上使用 NNAPI 进行 AI 推理部署时的性能分析与 Trace 报告解析实战,全面讲解 Execution Trace 日志的采集、解读与问题定位流程,并介绍如何借助 `Perfetto`、`Systrace`、`TraceViewer` 等工具进行可视化分析与瓶颈挖掘。内容涵盖原始事件结构、耗时拆解、OP 粒度性能审计、芯片调度路径重构等关键环节,结合实际项目案例,完整复现一套可工程复用的 Profile 分析闭环,为移动端大模型部署提供精准调优依据。全流程真实可落地,原创 2025-06-02 22:00:00 · 829 阅读 · 0 评论 -
对话模型/智能助手模型在手机端的部署挑战与实战路径:架构设计、资源适配与性能优化全解析
随着智能助手需求在智能手机、可穿戴设备等终端侧的快速增长,如何将大规模对话模型(如ChatGLM、Qwen-Turbo、DeepSeek Lite等)有效部署至资源受限的移动平台,已成为 AI 工程落地的关键挑战。本篇将聚焦当前行业主流的手机端部署实践,从模型结构剪枝与量化、国产芯片推理支持、NPU 加速适配、系统资源管理、延迟与功耗优化等方面,逐步剖析整个部署链路的核心难点与解决方案。文中将结合真实的部署案例、终端设备数据、芯片 API 限制等一线经验,输出完整可复用的工程路径,帮助开发者构建稳定、高效、原创 2025-06-02 20:30:00 · 1768 阅读 · 0 评论 -
Android 端异构 AI 架构中的稳定性与热插拔支持:多计算单元协同与容错体系构建实战
随着 Android 端 AI 场景的广泛落地,越来越多设备采用“CPU + GPU + NPU + DSP”等异构计算单元协同方案。然而,由于芯片厂商实现差异、调度链路复杂及部分 NPU 模块易受温控或时序影响,如何保障系统在运行中具备良好的稳定性、容错性与“计算单元热插拔”能力,已成为核心挑战之一。本文系统解析 Android 异构 AI 架构下的设备状态监测、fallback 策略、热插拔支持、调度器容灾机制及 operator routing 实现路径,为企业级边缘 AI 应用提供可落地的稳定性保障原创 2025-06-02 19:00:00 · 645 阅读 · 0 评论 -
高并发流式音视频场景下的 AI 模型调度策略实战指南
在视频监控、在线会议、直播转写、内容审核等高并发流式音视频场景中,AI 模型的调度与推理策略直接影响系统的吞吐能力与延迟表现。特别是在国产芯片(如寒武纪、地平线、华为昇腾)广泛部署的边缘场景下,如何合理分配计算资源、降低任务堆积风险、保障实时响应成为核心挑战。本文基于真实项目经验,系统剖析流式数据处理中的异构资源调度路径、推理模型并行策略、动态调度框架设计以及多模型融合调度中的性能瓶颈与优化手段。通过工程级落地方案与关键模块源码实践,帮助开发者构建稳定、高效、可扩展的流媒体 AI 系统。原创 2025-06-02 17:00:00 · 829 阅读 · 0 评论 -
Android 系统热启动模型缓存机制构建路径:优化加载延迟与推理响应全流程实战指南
在移动端 AI 模型部署场景中,冷启动加载延迟与模型初始化耗时已成为影响用户体验的关键瓶颈之一。尤其在对话类助手、语音交互和视觉识别任务中,模型首次加载需耗费显著的磁盘 IO 与内存资源,严重拖慢响应速度。本文聚焦 Android 平台下的“热启动模型缓存机制”构建路径,系统性分析当前主流大模型的加载流程与缓存关键点,实战详解如何基于内存映射(mmap)、系统服务持久化绑定、Native 共享句柄、内存 context 池等技术手段,实现模型加载零等待、首次响应毫秒级优化目标,提升整体推理性能与系统能效比。原创 2025-06-02 15:15:00 · 602 阅读 · 0 评论 -
轻量级 Runtime 设计实战:异构调度引擎与 Pipeline Controller 全流程构建指南
在大模型端侧部署、低功耗边缘计算与高吞吐在线服务日益融合的趋势下,构建一套高效、可扩展、可落地的轻量级 Runtime 成为系统架构演进的关键。本文结合 2025 年业界实际落地路径,深入解析如何围绕异构计算资源(如 CPU/NPU/GPU/DSP)构建高可用的模型调度引擎,并通过 Pipeline Controller 实现跨任务、跨模块的精细化任务编排与执行链管理。全文聚焦工程实战,基于真实架构拆解和企业部署经验,详细阐述轻量 Runtime 的核心机制、调度策略、运行控制、可观测性设计及其在多终端多模原创 2025-06-02 11:03:49 · 918 阅读 · 0 评论 -
Transformer 模型子图部署与异构推理调度策略:AI 芯片平台工程实战解析
Transformer 模型广泛应用于自然语言处理、多模态理解和语音识别等任务,其深层结构与大规模计算需求对终端芯片平台的部署能力提出了极高要求。在当前多种 AI 芯片平台不断优化图编译器与推理引擎的背景下,如何实现 Transformer 模型的合理子图划分、计算图重构与跨设备协同推理成为工程落地的关键环节。本文基于 2025 年 5 月最新主流芯片平台能力与模型部署实践,系统总结模型子图拆分、Attention 模块兼容性优化、LayerNorm/Softmax 等算子的调度方式,重点解析跨设备数据传输原创 2025-06-02 11:01:45 · 661 阅读 · 0 评论 -
Android 终端模型部署实战:ResNet / MobileNet / BERT 在主流 AI 芯片平台上的兼容性分析与优化实践
随着 AI 算力加速下沉,越来越多的移动端与边缘设备在应用中承担起模型推理任务。尤其是在 Android 系统广泛部署的背景下,如何实现主流模型(如 ResNet、MobileNet、BERT)在各类 AI 芯片平台上的高效运行,成为工程实践中的核心挑战。本文聚焦 2025 年 5 月前各类主流芯片平台的 Android 部署路径,通过实测对比其在模型转换、推理性能、算子支持、量化适配等方面的实际表现,总结端侧模型部署的关键路径与优化策略,并分享在工程项目中遇到的典型问题与解决方案原创 2025-06-02 10:44:54 · 983 阅读 · 0 评论 -
面向 Android NNAPI 的抽象设计与驱动集成路径
本文深入解析国产 NPU 在兼容性适配中的关键问题,系统提出一套面向 NNAPI 的统一接口抽象方案。该方案通过构建多层 Adapter 结构,实现算子语义映射、张量结构统一、驱动行为封装与模型执行调度机制的一致性控制,并通过实际项目落地验证,显著提升多平台部署效率与工程交付质量,为智能终端 AI 推理能力提供通用可复用的系统解决路径。原创 2025-06-02 10:04:06 · 1128 阅读 · 0 评论 -
推理过程中的内存峰值控制与缓存替换策略:系统化优化路径与实战案例
在大模型部署和异构计算加速不断普及的背景下,推理阶段的**内存峰值问题**已成为性能优化的关键瓶颈,尤其在边缘设备与国产 NPU 场景中更为突出。本文系统梳理推理引擎中内存分配策略、缓存替换机制、算子重用路径等核心问题,基于 MindSpore Lite、TensorRT、QNN、DeepSeek-Lite 等主流引擎,结合实际工程案例剖析从“静态图内存分配”到“动态运行时内存调度”的完整控制链。我们将重点讲解 Memory Arena 机制构建、Tensor 生命周期追踪、Streaming 内存压缩方案原创 2025-06-01 12:28:59 · 986 阅读 · 0 评论 -
动态算子注册与编译优化接口实战指南:OpRegistry × Execution Plan 架构全解析
随着 Android 端 AI 推理任务日益复杂,标准 TFLite 和 NNAPI 的内建算子难以满足所有业务需求。为解决此问题,TensorFlow Lite 提供了 `OpResolver` 与 `OpRegistry` 架构,用于注册与管理动态算子,并通过 `Execution Plan` 构建高效调度图,协同 Delegate 提升模型执行效率。本文将基于真实国产芯片部署需求,系统剖析动态算子注册机制、自定义算子结构、执行计划构建策略与优化接口调用路径,深入探讨自定义算子落地实践与国产平台 NNA原创 2025-06-01 12:26:45 · 630 阅读 · 0 评论 -
多任务模型的异构调度与资源隔离优化:移动端 AI 芯片的任务编排与执行效率提升全路径解析
随着移动端 AI 应用日益复杂,从单模型推理向多任务、多模型并发演进,模型间的调度冲突、执行资源争抢、延迟抖动等问题开始凸显。尤其在具备 CPU + GPU + NPU + DSP 的异构计算架构下,如何实现多任务模型的合理调度、资源隔离与性能保障,已成为国产芯片平台优化的关键方向。本文聚焦移动端环境下多模型调度的实战落地路径,系统剖析异构算力调度机制、模型资源隔离策略、任务优先级管理与执行路径优化方法,结合寒武纪、地平线、天数智芯等平台最新架构,提供全面的工程实践方案,帮助开发者构建稳定、高效、可控的多任原创 2025-06-01 12:08:27 · 599 阅读 · 0 评论 -
Vendor HAL 层调试策略:logging、trace、timeline 报文解析实战指南
在国产 NPU 与 Android 平台融合部署的场景下,Vendor HAL 层作为连接 NNAPI 与底层驱动的重要桥梁,承载着任务下发、内存映射、推理调度等关键行为。其调试质量直接影响模型部署的稳定性与兼容性。本文聚焦于国产平台常用 HAL 层的调试方法与体系构建,系统介绍了 HAL logging 设计、trace 报文采集与解析、timeline 时序链路重建等核心调试技术,结合瑞芯微、地平线、寒武纪等平台的实战经验,提供基于 `logcat`、`tracelog`、`vendor_dump` 的原创 2025-06-01 10:27:57 · 1004 阅读 · 0 评论 -
算子调度策略优化与 Fallback 比例最小化控制路径:国产 NPU 混合模型推理执行深度实战
在部署 Transformer+CNN 等复杂结构模型到国产 NPU 平台时,算子支持能力的不一致导致了大量 fallback(回退到 CPU 或 GPU)现象,严重影响推理性能和稳定性。本文聚焦于如何通过“算子调度策略优化”与“fallback 最小化控制路径”实现推理链路的可控执行,构建高兼容性、高性能的推理执行系统。文章基于地平线 BPU、瑞芯微 RKNN、寒武纪 MLU、海思 NPU 等主流平台实测数据,系统性讲解了调度器如何根据平台支持能力、张量 layout/dtype、依赖图拓扑等信息进行精细原创 2025-06-01 09:41:24 · 894 阅读 · 0 评论 -
Transformer+CNN 混合结构的兼容性分层推理策略:多算子异构执行与平台映射优化实战
随着 ViT、Swin Transformer、ConvNeXt 等 CNN 与 Transformer 融合架构广泛应用于视觉任务,如何在国产异构 NPU 上部署这类混合结构模型,成为实际工程落地的关键难点。由于 CNN 与 Transformer 部分算子在底层计算方式、内存布局、依赖图结构上存在显著差异,传统一体化模型推理框架难以在各平台兼容运行,常见执行失败、精度漂移、性能退化等问题。本文基于多款国产 SoC 实际部署经验,系统性提出“分层切图 + 异构映射 + 标准接口”的推理兼容方案,围绕模型分原创 2025-06-01 09:11:54 · 861 阅读 · 0 评论 -
多芯片厂商跨平台 HAL 接口统一标准建设路径:构建国产 NPU 生态兼容底座的工程化方案
在 Android 智能终端系统中,不同芯片厂商的 NPU 驱动实现存在 HAL 接口定义不一致、模型执行流程差异大、能力申报不规范等严重问题,阻碍了国产 NPU 大规模集成与系统性生态落地。为此,本文基于多个头部国产 AI SoC 平台的适配经验,总结当前 HAL 实现中的碎片化现状,系统性提出“跨平台 HAL 抽象层标准化”路径,明确 OperatorAdapter、TensorAdapter、Dispatcher 三大模块的封装机制,并结合 AIDL/HIDL 接口切换演进趋势,落地可复用的通用驱动接原创 2025-05-31 22:30:06 · 604 阅读 · 0 评论 -
如何为国产 NPU 定制 AOSP 驱动并集成 NNAPI HAL 模块:内核模块开发、HAL 接口对接与系统集成实战指南
在构建面向国产 NPU 的 Android 系统支持时,AOSP 驱动与 NNAPI HAL 的完整集成是芯片平台进入 AI 应用生态的核心环节。驱动模块不仅需适配 Linux 内核,还需与 Android 上层的 NNAPI Runtime、HAL 接口、CTS 测试框架保持一致性,并实现完整的算子支持、性能调度与资源隔离。本篇文章从底层内核驱动开发出发,逐步讲解如何构建 NPU 设备节点、注册 SoC 专用 runtime、实现 HIDL/AIDL NNAPI HAL 接口,以及如何完成与 Androi原创 2025-05-31 14:59:11 · 954 阅读 · 0 评论 -
国内主流 NPU 与 Google NNAPI CTS 测试兼容策略:平台适配实战与合规方案详解
在 Android 平台下,Google NNAPI(Neural Networks API)作为神经网络加速通用接口标准,已成为国产 NPU 集成与 SoC 平台认证的关键路径。为了获得 GMS 认证或进入主流应用生态,国产 AI 芯片必须通过 Google 提供的 CTS(Compatibility Test Suite)对 NNAPI HAL 实现的验证。然而 CTS 涉及接口一致性、算子兼容性、调度策略、安全机制等多个维度,对驱动实现提出严格要求。本文围绕寒武纪、地平线、瑞芯微、黑芝麻、寒光、启英泰原创 2025-05-31 12:07:19 · 813 阅读 · 0 评论 -
RKNN ToolKit × TFLite × NNAPI 混合部署案例解析:多路径融合推理的工程实践
在边缘智能设备部署中,不同模型格式、执行路径与算子支持范围的差异,使得“全路径一致性部署”成为挑战。为实现多模型场景下的高效推理执行,本篇文章聚焦于 RKNN ToolKit × TFLite × NNAPI 的混合部署实践,依托瑞芯微 RKNPU2 平台,在 Android 系统中搭建一套支持 TFLite 动态模型加载、NNAPI 加速调用与 RKNN Runtime 自主执行相结合的推理体系。文中涵盖模型转换、执行路径选择、运行时适配判断、调度分发逻辑与性能监控机制,并提供真实可复现的混合部署工程案例原创 2025-05-31 09:27:43 · 934 阅读 · 0 评论 -
多平台模型推理性能评估系统实战指南:架构设计与部署优化全流程解析
在实际部署中,不同设备平台所具备的运行环境、硬件支持与模型兼容性差异显著。如何在多平台场景下实现统一的模型推理性能评估与任务调度,成为算法开发与系统部署的重要环节。本文结合当下多种主流计算平台的使用实践,从系统架构设计、模型转换、性能指标采集、输入输出格式规范,到调度策略实现,完整呈现多平台推理性能评估系统的工程建设路径。通过标准化流程实现模型快速适配、测试数据归一、性能评分透明化,为模型推理系统在移动终端、边缘设备等多种环境中的部署与调优提供实用参考。原创 2025-05-31 08:30:43 · 738 阅读 · 0 评论 -
黑芝麻 A1000 驱动结构与 HalService Binder 接入细节全流程实战解析
黑芝麻智能推出的 A1000 系列 SoC 是面向智能驾驶与嵌入式视觉计算的高性能国产 AI 芯片平台,内置高效 NPU 单元与自研 AI 加速指令集,具备完整的 AI 处理能力与开放的 SoC 接口。在 Android 平台适配中,实现 NPU 推理加速的关键在于 HAL 层的构建与 Binder Service 接入的规范化封装。本文从驱动结构出发,系统讲解黑芝麻 A1000 在 Android 架构下 NPU 执行路径的封装逻辑、HalService 的注册方式、模型执行闭环流程以及调度性能监控机制,原创 2025-05-30 22:30:00 · 667 阅读 · 0 评论 -
Cambricon MLU 嵌入式系统 NNAPI 驱动封装实现策略实战解析
寒武纪推出的 MLU 嵌入式系列 AI 加速芯片广泛应用于工业视觉、智能边缘设备、智慧交通等场景,其具备高并发推理能力、完备的 CNRT 运行时支持体系以及多模型调度能力。为了打通寒武纪 MLU 芯片与 Android NNAPI 框架的集成路径,需在 SoC 层实现自定义 HAL 接口、封装 CNRT 推理调用链、完成 TFLite Delegate 自动加速接入,并通过合理的资源隔离与张量管理策略,确保多模型高效执行。本文围绕最新 MLU370 平台,系统解析其 NNAPI 驱动封装的核心流程、接口设计原创 2025-05-30 23:30:00 · 534 阅读 · 0 评论 -
SOPHON 嵌入式芯片 × NNAPI 接入路径与执行性能评估实战指南
SOPHON(寒武纪中科智芯旗下)推出的 BM1684/BM1688 系列嵌入式 AI 芯片,广泛应用于边缘视觉、智能终端、工业识别等领域,其内置 TPU 能够高效执行 INT8/FP16 神经网络推理任务。本文聚焦 SOPHON 平台在 Android NNAPI 框架下的完整接入流程,涵盖 HAL 架构设计、BMRuntime 对接、自定义模型编译工具链使用、张量内存绑定、执行链路追踪及多模型部署实战,并结合真实部署环境进行执行性能评估与瓶颈分析,全面指导开发者在实际项目中实现 SOPHON 芯片的高效原创 2025-05-30 23:00:00 · 777 阅读 · 0 评论 -
地平线旭日芯片 × Android NNAPI 调用全链路实践指南
地平线旭日系列芯片(如旭日X3、X5)作为国产边缘AI SoC的重要代表,已广泛应用于智能驾驶舱、工业视觉、边缘计算等领域。其自研 BPU(Brain Processing Unit)具备高能效比与稳定推理能力,并通过 HBM SDK 对外提供统一的编译与运行支持。本文聚焦于旭日芯片在 Android 平台上的 NNAPI 接入与执行路径,系统梳理从模型构建、HAL 接入、执行调度、内存映射到多模型并发等关键链路,结合 2025 年最新版 SDK 实战细节展开全面解析,帮助工程师高效完成地平线平台的智能模型原创 2025-05-30 22:00:00 · 627 阅读 · 0 评论 -
MediaTek NeuroPilot × NNAPI 多算子拆解与执行验证实战指南
随着 Android NNAPI 推理接口成为 AI 加速标准入口,芯片厂商需构建完整的 HAL 模块与 runtime 执行路径以接入系统推理链。MediaTek 基于其自研 AI 加速引擎 APU 提供 NeuroPilot SDK,实现对 NNAPI 的深度融合,广泛部署于天玑系列 SoC 中。本文以 2025 年最新版 APU SDK 与 Android 14 平台为基础,围绕多算子适配流程、自定义 HAL 架构、模型执行验证、算子支持测试等多个维度,系统解析 NeuroPilot × NNAPI原创 2025-05-30 21:30:00 · 1356 阅读 · 0 评论 -
瑞芯微 RKNN × NNAPI 驱动架构与执行链路设计全解析
随着 Android 原生 NNAPI 推理标准逐步成熟,国产芯片厂商正加速构建自适配 NNAPI 的硬件加速体系。瑞芯微(Rockchip)通过 RKNN SDK 为自研 NPU 提供了完整的模型部署与执行支持,在 2025 年最新发布的 RKNN Toolkit 1.9.1 与驱动框架中,已实现对 Android 14 NNAPI 的深度适配,具备构建自定义 HAL 并接入系统推理链的能力。本文将围绕 RK3588 与 RK3568 等主流 SoC 芯片,系统剖析 RKNN 驱动架构、HAL 层设计、自原创 2025-05-30 21:00:00 · 1586 阅读 · 0 评论