
视觉项目实战:从 YOLO 到行业解决方案
文章平均质量分 96
本系列博客聚焦于计算机视觉中最具工程实战价值的方向——目标检测与多目标追踪。以 YOLO 系列为核心,结合 DeepSORT、ByteTrack、RT-DETR 等主流算法,系统解析其在交通、制造、农业、医疗、安防、零售等多个行业的真实落地路径。全系列共 80 篇,分为算法基础、部署优化与行业案例三
观熵
走在AI与场景融合的前线,关注技术演进、产品迭代与智能时代的创新创业机会。
展开
-
自监督预训练与视觉 Transformer 在目标检测中的崛起:从 ViT、MAE 到 DETR 的落地演进
视觉 Transformer(ViT)与自监督预训练技术的融合,正在加速目标检测从 CNN 主导走向统一建模的新时代。本文将系统解析自监督(如 MAE、DINOv2)如何成为 ViT 系列模型的预训练主力,剖析 DETR 及其家族架构如何通过 Transformer 完成端到端检测,并结合多个真实工业应用,分享 ViT 检测模型在不同任务中的落地路径、性能表现与部署挑战。文章内容聚焦可实操方案与最新开源实践,面向视觉系统开发者与工程落地团队提供系统参考。原创 2025-06-09 19:46:36 · 227 阅读 · 0 评论 -
多目标追踪(MOT)核心技术全解析:从 SORT 到 ByteTrack 的实战演进路径
多目标追踪(Multi-Object Tracking, MOT)是智能视频分析中的关键技术之一,广泛应用于智慧城市、工业监控、交通管理与智能零售等场景。在实际工程中,MOT 系统面临的主要挑战包括:目标遮挡、快速移动、Re-ID 混淆、轨迹丢失与误匹配等。本篇文章围绕三种具有代表性的 MOT 算法——SORT、DeepSORT 和 ByteTrack,系统梳理其算法原理、关键模块、优势劣势及工程实践细节。文章以实战为导向,结合当前主流检测器(YOLOv8)与视频数据集的真实部署经验,深入解析 MOT 模原创 2025-06-08 21:30:00 · 919 阅读 · 0 评论 -
Anchor-based vs Anchor-free:目标检测框架的两种范式及工程实战比较
Anchor-based 与 Anchor-free 是目标检测算法发展的两条核心技术路线。前者以固定锚框为检测基础,广泛应用于 YOLOv5、SSD、Faster R-CNN 等主流模型中;后者摒弃了锚框机制,通过关键点定位与密集回归方式实现高效检测,代表模型包括 FCOS、CenterNet、RT-DETR 等。本篇文章围绕两种方法在模型结构、标签分配、推理流程、部署复杂度等方面的核心差异展开分析,结合真实测试数据与部署实践,探讨各类场景下的选型策略与优化路径。通过典型模型的对比实录与落地经验总结,为工原创 2025-06-08 19:00:00 · 573 阅读 · 0 评论 -
目标检测与目标追踪的本质区别与工程实践对比:从算法选型到系统架构解构
在计算机视觉工程中,“目标检测”和“目标追踪”常被同时提及,但在系统设计、算法原理与实际应用场景中,这两类任务有本质性的差异。前者强调识别图像中所有目标的位置与类别,适用于静态帧分析;而后者则关注目标在连续帧之间的状态保持、编号一致与轨迹预测,更多用于实时视频处理、行为分析与动态监控系统中。本篇文章基于真实工程实践,系统梳理了目标检测与追踪在任务定义、模型结构、输入输出、评估指标、部署方案等方面的差异,并结合 YOLOv8、ByteTrack、DeepSORT 等主流算法实现,提供多种业务场景下的选型建议与原创 2025-06-07 21:19:35 · 703 阅读 · 0 评论 -
YOLO 目标检测算法演进全景解析:从 v1 到 v9 的技术变革与工程实战价值
YOLO(You Only Look Once)系列作为目标检测领域最具影响力的算法体系之一,自 2016 年首次提出以来,已历经九代演进。每一代都在速度、精度、模型结构与部署效率之间寻求最佳平衡点。从 YOLOv1 的统一回归框架,到 YOLOv9 引入 GELAN 架构、支持多任务一体训练,YOLO 系列已广泛应用于安防监控、智慧交通、工业检测、移动端部署等多个场景。本篇文章将基于真实工程视角,深入剖析 YOLO 系列 v1 至 v9 的演进路径与核心技术变革,结合实战部署经验,讨论各版本在实际应用中原创 2025-06-07 16:00:00 · 537 阅读 · 0 评论