LCM-发、收

  • 这几天写了lcm发、收、录、读的小工具,之前都用过发和收,这次主要还是录和读,就是把接收到的lcm消息保存下来,再通过另外一个读的程序把数据读出来,用于离线分析等。
  • LCM(Lightweight Communications and
    Marshalling)在实时系统的数据传递中经常被使用。它具有高带宽、低延迟的特点,支持多种编程语言,API使用方便。官方文档提供了基本的使用说明,以及函数的具体代表。

发送消息

step1:定义结构体

1、将要发送的数据,定义在一个结构体中,写在以 .lcm 结尾的文件中。比如:

struct example_t
{
    int64_t  timestamp;
    double   position[3];
    double   orientation[4]; 
    int32_t  num_ranges;
    int16_t  ranges[num_ranges];
    string   name;
    boolean  enabled;
}

其中,数据类型需要使用lcm支持的类型,如下:
在这里插入图片描述
定义好数据结构后,生成对应语言使用的头文件。使用如下指令:
在这里插入图片描述
没有问题的话就会生成example_t.hpp,这个文件是不允许修改的。

step2:LCM初始化

数据结构的头文件生成后,在主程序代码里#include进来

#include <lcm/lcm-cpp.hpp>
#include “example_t.hpp"

定义lcm的对象并初始化

lcm::LCM lcm;
 if(!lcm.good())
	return 1;

初始化干了什么呢?我们进去看一下:

inline bool
LCM::good() const
{
    return this->lcm != NULL;
}

好像也没干什么?

step3:赋值并发送

在程序中定义一个数据结构的对象,并在相应的位置进行赋值

example_t   my_data;
my_data.timestamp = 0;
my_data.position[0] = 1;
my_data.position[1] = 2;
my_data.position[2] = 3;

发送

lcm.publish("EXAMPLE", &my_data);

其中"EXAMPLE"为通道名,可以自由定义,接收的时候也要指定,二者保持一致才能收到。
发送的数据较多时,可以定义多个数据结构,相应会有多个lcm生成的头文件。用不同的通道名来区分他们。发送时也可灵活选择对哪些通道的数据进行发送。

至此,lcm发送的方式就结束了,还是很简洁的。整个发送代码如下:

 	  #include <lcm/lcm-cpp.hpp>
     #include "exlcm/example_t.hpp"
     
     int main(int argc, char ** argv)
     {
         lcm::LCM lcm;
         if(!lcm.good())
             return 1;
     
        exlcm::example_t my_data;
        my_data.timestamp = 0;
    
        my_data.position[0] = 1;
        my_data.position[1] = 2;
        my_data.position[2] = 3;
    
    
        lcm.publish("EXAMPLE", &my_data);
    
        return 0;
    }

接收消息

消息接收主要利用lcm.subscribe()函数,函数定义如下:

LCM::subscribe(const std::string& channel,
    void (MessageHandlerClass::*handlerMethod)(const ReceiveBuffer* rbuf, const std::string& channel, const MessageType* msg),
    MessageHandlerClass* handler)

上面需要3个参数,分别是(通道名、回调函数、句柄对象)。
subscribe()还有另一种重载形式,其中回调函数只要2个参数,不用绑定具体的类对象。

LCM::subscribe(const std::string& channel,
    void (MessageHandlerClass::*handlerMethod)(const ReceiveBuffer* rbuf, const std::string& channel),
    MessageHandlerClass* handler)

step1:LCM初始化

 #include <stdio.h>
 #include <lcm/lcm-cpp.hpp>
#include "exlcm/example_t.hpp"

int main(int argc, char** argv)
	 {
        lcm::LCM lcm;
        if(!lcm.good())
            return 1;
      }

step2:定义句柄及回调函数

句柄类可以如下定义,其中handleMessage即为subscribe时使用的回调函数:

class Handler 
     {
         public:
             ~Handler() {}
     
            void handleMessage(const lcm::ReceiveBuffer* rbuf,
                    const std::string& chan, 
                    const exlcm::example_t* msg)
            {
                int i;
                printf("Received message on channel \"%s\":\n", chan.c_str());
                printf("  timestamp   = %lld\n", (long long)msg->timestamp);
                printf("  position    = (%f, %f, %f)\n",
                        msg->position[0], msg->position[1], msg->position[2]);
                printf("\n");
            }
    };

上面代码将接收到的内容打印出来,可以看到,使用了之前定义的消息类型example_t

step3:接收消息

定义句柄对象,调用subscribe()函数接收。其中lcm.handle()

Handler handlerObject;
lcm.subscribe("EXAMPLE", &Handler::handleMessage, &handlerObject);

while(0 == lcm.handle());

LCM自动解码消息,再传给回调函数,回调函数可以识别消息类型。因为回调函数在lcm.handle()方法中调度,所以不需要并发执行,这些都在一个单线程中完成。
调用lcm.handle()非常重要,函数会保持阻塞直到有任务需要做。

完整的接收代码如下,代码只会接收通道名为”EXAMPLE"的消息。

	1 #include <stdio.h>
    2 #include <lcm/lcm-cpp.hpp>
    3 #include "exlcm/example_t.hpp"
    4 
    5 class Handler 
    6 {
    7     public:
    8         ~Handler() {}
    9 
   10         void handleMessage(const lcm::ReceiveBuffer* rbuf,
   11                 const std::string& chan, 
   12                 const exlcm::example_t* msg)
   13         {
   14             int i;
   15             printf("Received message on channel \"%s\":\n", chan.c_str());
   16             printf("  timestamp   = %lld\n", (long long)msg->timestamp);
   17             printf("  position    = (%f, %f, %f)\n",
   18                     msg->position[0], msg->position[1], msg->position[2]);
   28         }
   29 };
   30 
   31 int main(int argc, char** argv)
   32 {
   33     lcm::LCM lcm;
   34     if(!lcm.good())
   35         return 1;
   36 
   37     Handler handlerObject;
   38     lcm.subscribe("EXAMPLE", &Handler::handleMessage, &handlerObject);
   39 
   40     while(0 == lcm.handle());
   41 
   42     return 0;
   43 }

一个lcm对象可以有无限个接收器,如果有多个通道的消息需要接收,可以

lcm.subscribe("AAAA", &Handler::handleMessage, &handlerObject);
lcm.subscribe("BBBB", &Handler::handleMessage, &handlerObject);

或者用下面方式接收所有通道

lcm.subscribe(".*", &Handler::handleMessage, &handlerObject);
<think>好的,我现在要帮用户了解LCM-LoRA的相关信息,包括定义、用法和实现细节,还有模型下载安装配置的问题。首先,我需要整理用户提供的引用资料,看看里面有什么关键点。 根据引用内容,LCM-LoRA是结合了Latent Consistency Models和LoRA技术的一种加速模块。它的主要作用是通过蒸馏过程减少扩散模型的推理步骤,同时保持生成质量。用户可能想知道它是如何工作的,为什么有效,以及具体怎么使用。 接下来,用户提到的下载安装配置部分,我需要查看引用中的信息。引用2提到支持多种模型如SDXL、SDV1-5和SSD-1B,安装前需要准备环境,比如安装diffusers库和PyTorch。引用4提到使用LoRA技术,可能涉及加载预训练的LoRA权重。 然后,实现细节部分,引用3和4提到LoRA通过低秩适应微调,将教师模型的知识蒸馏到适配层,这样可以在不同模型上灵活应用。可能用户想知道具体的训练过程或架构设计。 用户的问题可能还涉及如何结合其他LoRA模块,比如风格微调的,引用1提到可以线性组合参数,实现无需训练的风格加速生成。这部分需要详细说明使用方法。 需要注意用户可能需要步骤化的安装配置指南,比如安装依赖、加载模型、推理步骤。同时,要确保回答结构清晰,分点说明定义、特点、使用步骤、实现细节等。还要生成相关问题,可能涉及原理、比较其他方法、兼容性、优化等。 最后,检查是否需要区分系统级指令和用户可见层,确保格式正确,使用中文,LaTeX正确,引用标识自然添加。可能漏掉的部分需要确认,比如模型下载的具体链接或命令,但引用中没有给出,可能需要建议官方仓库或Hugging Face。</think>### LCM-LoRA 详细介绍 #### 一、定义与核心原理 LCM-LoRA(Latent Consistency Model LoRA)是一种基于**低秩适应(LoRA)**的扩散模型加速模块,通过**知识蒸馏**将扩散模型的推理步骤压缩至2-8步,同时保持生成质量[^3]。其核心思想是将一致性模型(Consistency Model)的蒸馏过程与LoRA技术结合,仅优化少量适配层参数,而非整个模型[^4]。 数学上,扩散模型的概率流ODE(PF-ODE)可表示为: $$ \frac{d\mathbf{x}_t}{dt} = f(\mathbf{x}_t, t) $$ LCM-LoRA通过训练适配层参数$\theta$,学习从教师扩散模型中蒸馏出的函数$f_\theta$,从而替代传统数值求解器。 #### 二、核心特点 1. **高效推理**:推理步骤从15-50步减少至2-8步,速度提升5-10倍[^2] 2. **参数轻量化**:仅需微调0.1%-1%的模型参数(LoRA层) 3. **兼容性**:支持与风格微调LoRA参数**线性叠加**,实现零训练多风格生成[^1] 4. **泛化能力**:适配SDXL、SDv1.5、SSD-1B等多种扩散模型[^4] #### 三、安装与配置 ```python # 环境准备(需PyTorch>=2.0) pip install diffusers transformers accelerate peft ``` ```python from diffusers import StableDiffusionXLPipeline import torch # 加载基础模型+LCM-LoRA pipe = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ).to("cuda") # 注入LCM-LoRA权重 pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl") ``` #### 四、使用示例 ```python # 生成图像(4步推理) prompt = "A astronaut riding a horse on Mars" image = pipe( prompt=prompt, num_inference_steps=4, guidance_scale=1.0 # LCM模式下需关闭CFG ).images[0] ``` #### 五、实现细节 1. **蒸馏过程**: - 使用L2损失函数对齐教师模型输出: $$ \mathcal{L} = \mathbb{E}[\|f_\theta(\mathbf{x}_t,t) - f_{\text{teacher}}(\mathbf{x}_t,t)\|^2] $$ - 冻结原始模型参数,仅优化LoRA层[^3] 2. **架构设计**: - 在UNet的交叉注意力层注入LoRA适配器 - 典型配置:rank=64,alpha=16[^4] 3. **混合推理**: ```python # 结合风格LoRA(需相同rank) pipe.load_lora_weights("path/to/style_lora", adapter_name="style") pipe.set_adapters(["lcm", "style"], weights=[1.0, 0.8]) ``` ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值