Contactless Biometric Identification using 3D Finger Knuckle Patterns
1. Introduction
- 一般,关节模式的最具有判别性的信息是:knuckle curves and creases。但是从2D的图像准确的提取出这些特征信息,比较困难,因为光照的改变对其影响很大.
- 3D的指关节信息更可靠,由于3D信息对于光照的改变是没有变化的。
- 可以同时利用2D和3D的信息,来提高性能
- challenges:
- it’s difficult to design a feature descriptor to robustly recover unique information from 3D curve and creases.
- 3D 扫描技术的限制,相对于方便的2D系统,3D技更加 耗时耗力。
- 瓶颈:缺少数据库
2. Related Work
- Based on the nature of feature descriptors, these approaches can be largely categorized into three categories:
- those based on subspace learning
- spectral features
- those based on the discretization of local features
Key contributions
- Simultaneous acquisition of 3D and 2D finger knuckle images
- We develop a new feature descriptor to efficiently and more accurately match 3D finger knuckle biometric patterns
- this paper develops the first two-session 3D finger knuckle database
3. 3D finger knuckle identification
3.1 Image acquisition
1. 我们通过光度立体视觉方法(photometric stereo approach)方法获得3D手指关节图像。
2. 一个low-cost 固定的摄像机+7个围绕在摄像机分布的灯+控制电路
3. 灯的位置可以通过,放置一个大头针,根据阴影的高度等来近似确定。
3.2 Image Preprocessing and segmentation
-
提取感兴趣的区域,即包含手指关节图像的区域。
用一个固定大小的矩形,沿着长宽方向进行寻找,最终,确定矩形像素最多的区域作为分割区域
-
分割后的区域进行对比度拉伸。