制作自己的数据-深度恢复

这篇博客讲述了如何利用colmap对视频帧进行处理,创建自己的遮挡数据集。首先将MP4视频转为PNG帧,然后配置并运行colmap进行自动重建,解决过程中遇到的GPU支持和路径问题。经过等待,成功获取sparse文件夹下的重建数据,并进行后续的TXT格式转换和注释删除,为深度学习模型提供输入。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 上两篇关于occlusion测试通过,来制作自己的遮挡

  2. 准备视频文件“Video.MOV”并提取帧。
    在这里插入图片描述手机拍摄的是mp4格式,需要转化位mov格式,后来直接用MP4格式,用video2frame转换成png,注意命名格式**%06d**

  3. 先配置了colmap

  4. colmap 格式得到重建的参数(无需相机内参)
    (*注:*不是参考的colmap里面的重建方法,是参考的AR_Depth Occlusion里面,详见5、7)这里的插入的图片只是示例
    在这里插入图片描述
    用提取出来的图片帧,重建
    在这里插入图片描述
    正好是我们需要的三个重建的文件

  5. 自动重建,问题来啦,有点开心,毕竟没有问题是不可能的,输入
    在这里插入图片描述出现不支持siftGPU

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值