点云库(PCL)学习——基本结构

PCL(Point Cloud Library)1.x版本中的数据类型pcl::PointCloud是一个C++类,包含width、height、points和is_dense等字段。width和height分别表示点云数据集的宽度和高度,对于有组织的点云数据集,它们定义了行和列的数量;对于无组织的数据集,height通常设为1。points字段存储PointT类型的点数据,如PointXYZ。is_dense指示所有点的数据是否有限,不包含Inf/NaN值。此外,还有sensor_origin和sensor_orientation用于表示传感器的采集位置和方向。辅助函数如isOrganized()帮助判断数据集是否为有组织结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PCL1.x版本中的数据类型为: pcl:PointCloud<pcl::PointCloud>
PointCloud 是C++ 的一个类(class),包含了以下数据字段:

  • pcl:width<pcl::PointCloud::width>(int)
    以点数为单位指定点云数据集的宽度。宽度有两种含义:
    • 可以为无组织数据集指定云中的点的总数(等于点中元素的数量–见下文);
    • 可以指定有组织点云数据集(organized point cloud)的宽度(行中的点总数)。

NOTE:有组织的点云数据集(organized point cloud)是为类似于有组织的图像(或矩阵)结构的点云指定的名称,其中数据被拆分为行和列。这种点云的例子包括来自立体相机或Time-of-flight相机的数据。有组织的数据集的优点是,通过了解相邻点(如像素)之间的关系,最近邻操作更加有效,从而加快了计算速度,降低了PCL中某些算法的成本。

NOTE:可投影点云数据集(projectable point cloud)是指根据针孔摄影机模型在有组织点云中的点(u,v)索引与实际三维值之间具有相关性的点云的名称。这种相关性可以用最简单的形式表示:u=fx/z和v=fy/z
例如:

cloud.width = 640;//there are 640 points per line
  • pcl:height<pcl::PointCloud::height>(int)
    以点数为单位指定点云数据集的高度。高度有两种含义:
    • 可以指定有组织点云数据集(organized point cloud)的高度(行的总数)。
    • 对于无组织的数据集,它设置为1(因此用于检查数据集是否为有组织的)
      例如:
cloud.width = 640;//Image-like organized structure, with 480 rows and 640 colums
cloud.height = 480;//thus 640*480=307200 points total in the dataset

cloud.width = 307200;
cloud.heigth = 1;//unorganized point cloud dataset with 307200 points
  • pcl:points<pcl::PointCloud::points>(std::vector< PointT >)
    包含存储PointT类型的所有点的数据数组。例如,对于包含XYZ数据的点云,点包含pcl::PointXYZ元素的向量:
pcl::PointCloud<pcl::PointXYZ> cloud;
std::vector<pcl::PointXYZ> data = cloud.points;
  • pcl:is_dense<pcl::PointCloud::is_dense>(bool)
    指定点中的所有数据是有限的(true),或者指定某些点的XYZ值可能包含Inf/NaN值(false)。
  • pcl:sensor_origin<pcl::PointCloud::sensor_origin>(Eigen::vector4f)
    指定传感器采集姿势(原点/平移)。这个成员通常是可选的,PCL中的大多数算法都不使用它。
  • pcl:sensor_orientation<pcl::PointCloud::sensor_orientation>(Quaternionf)
    指定传感器采集姿势(方向)。这个成员通常是可选的,PCL中的大多数算法都不使用它。

为了简化开发,pcl:PointCloud<pcl::PointCloud>类钟包含许多辅助成员函数。例如,用户不必检查代码中的height是否等于1,以查看数据集是否为有组织,而是使用:pcl:PointCloud<pcl::PointCloud::isorgaid>

if (!cloud.isOrganized ())
  ...

Reference

Getting Started / Basic Structures

### Point Cloud Library (PCL) 使用教程与 API 文档 Point Cloud Library(简称 PCL)是一个大规模的开源项目,专注于 2D/3D 图像和点云数据处理[^1]。它提供了丰富的功能模块,涵盖了滤波、特征估计、表面重建、配准、模型拟合以及分段等多个领域。以下是关于如何获取 PCL 的使用教程及其 API 文档的一些指导。 #### 获取官方文档 PCL 提供了详尽的在线文档资源,这些文档可以帮助开发者快速了解其核心概念和具体实现方式。可以通过访问官方网站来查阅最新的教程和技术细节: - **官网地址**: [http://pointclouds.org/documentation/index.html](http://pointclouds.org/documentation/index.html)[^1] 该网站包含了多个子页面链接,其中最重要的两个部分分别是: 1. **Tutorials**: 这里提供了一系列由浅入深的学习材料,适合初学者逐步掌握 PCL 基本操作。 2. **API Documentation**: 面向更高级别的需求者设计,这里列出了所有可用类定义及函数签名等内容,方便程序员编写自定义程序逻辑时查询所需接口信息。 #### Python 绑定支持 除了 C++ 版本外,PCL 还通过 `pclpy` 库实现了对 Python 平台的支持[^2]。这意味着即使不熟悉底层语言也可以轻松利用这一强大工具集完成相应任务。下面给出一段简单的例子展示如何加载文件并显示三维视图窗口: ```python from pclpy import pcl import numpy as np def main(): cloud = pcl.PointCloud.PointXYZRGB() pcl.io.loadPCDFile('path_to_your_file.pcd', cloud) print(f'Number of points in the point cloud: {cloud.size()}') print(f'Point cloud coordinates:\n{np.asarray(cloud.xyz)}') viewer = pcl.visualization.PCLVisualizer("3D Viewer") viewer.setBackgroundColor(0, 0, 0) rgb_handler = pcl.visualization.PointCloudColorHandlerRGBField.PointXYZRGB(cloud) viewer.addPointCloud(cloud, rgb_handler) while not viewer.wasStopped(): viewer.spinOnce() if __name__ == '__main__': main() ``` 此脚本展示了基本流程——从读取外部存储设备中的二进制格式(.pcd),到最终呈现图形界面让用户直观感受空间分布情况。 #### KDTree 查询实例 另外值得一提的是,在实际应用过程中经常需要用到近邻搜索技术,比如基于半径范围内的邻居节点检索等功能。以下片段演示了一个典型场景下的调用过程[^3]: ```cpp #include <pcl/kdtree/kdtree_flann.h> // Assume 'input_cloud' is already defined and filled with data. pcl::KdTreeFLANN<pcl::PointXYZ> kdtree; kdtree.setInputCloud(input_cloud); std::vector<int> pointIdxRadiusSearch; std::vector<float> pointRadiusSquaredDistance; float radius = 0.5f; // Define your desired search radius here. pcl::PointXYZ searchPoint; searchPoint.x = ... ; // Set target coordinate values accordingly. searchPoint.y = ... ; searchPoint.z = ... ; if(kdtree.radiusSearch(searchPoint, radius, pointIdxRadiusSearch, pointRadiusSquaredDistance) > 0){ // Process found neighbors... } ``` 以上代码片段解释了如何设置参数并通过 K-D Tree 数据结构高效执行区域限定型最近邻查找运算。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值