MATLAB 论文复现——基于风光互补发电系统的压缩空气混合储能系统容量优化

基于风光互补发电系统的压缩空气混合储能系统容量优化

摘要:压缩空气储能系统可以有效减少因风能和太阳能随机性造成的弃风弃光现象,但其动态响应时间长,且存储规模配置不合理会影响其发展。为此首先提出液流电池与压缩空气储能组成混合储能系统解决并网型风光互补发电系统输出波动不稳定的问题;其次基于典型小时负荷、风力机发电功率和光伏发电功率,针对不同场景,以系统最大收益为目标函数,利用猫群算法优化压缩空气储能系统的容量配置;最后分析压缩空气储能系统的额定容量与额定功率对系统最大收益的影响,验证算法可靠性。结果表明,基于风力机与光伏系统的装机功率分别为20 MW和3.42 MW的场景,压缩空气储能系统容量配置为4 MW和46.5 MW·h时,其经济性最佳,每周可节约购电成本183 688.24元,周最大收益为30 543.86元。


关键词:    压缩空气储能系统;混合储能系统;猫群算法;容量配置;经济性;

[1]虞启辉,高胜昱,孙国鑫,等.基于风光互补发电系统的压缩空气混合储能系统容量优化[J].新能源进展,2024,12(01):74-81.
 

为了解决由于风能和太阳能的随机性造成的弃风弃光现象,并对压缩空气储能系统(CAES)的容量进行优化配置,我们需要构建一个基于MATLAB的模拟模型来实现这一目标。以下是详细的MATLAB代码实现,包括模拟风光互补系统、优化CAES系统容量配置以及分析系统经济性的步骤。

第一步:定义风光互补系统的基本参数和模型
首先,我们需要模拟风力机和光伏发电系统的输出功率。

matlab
复制代码
function [windPower, solarPower] = simulateRenewablePower(hourlyLoad, windSpeed, solarIrradiance)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值