pointpillars点云算法TensorRT环境加速系列三

简述

  在之前的两篇博客基础上,继续写下通过TensorRT加速onnx模型的速度与精度提升了多少,主要是通过github上开源的代码onnx_tensorrt来优化加载onnx进行加速。onnx_tensorrt环境配置有点麻烦,需要相对应的onnx与tensorrt与onnx_tensorrt的版本。我的版本为:onnx = 1.4.0 + tensorrt = 5.1.5.0 + onnx_tensorrt = 5.1 。 NVIDIA官方issues里面有许多关于tensorrt版本的问题,不过建议按照对应的成功版本,按照onnx_tensorrt的步骤进行安装onnx_tensorrt库。当然,文末有我提交docker版本的onnx_tensorrt镜像。另外:我的之前两篇pointpillars点云算法链接如下:

pointpillars点云算法TensorRT环境加速系列一

pointpillars点云算法TensorRT环境加速系列二

  同时,我的主要代码会提交到github上面:点击传送门。如果觉得有用,还请star一下哈。

Compare pfe.onnx ONNX with TensorRT

  首先我们来进行pfe.onnx模型验证,通过两种方式进行加载:1、直接通过onnx方式进行加载预测;2、通过onnx_tensorrt进行加载来优化加速;注:因为之前博客已经对比过onnx加载输出与原始的pytorch模型对比过精度,损失系数在小数点后三位。那么,我们现在直接用onnx_tensorrt加速对比onnx方式即可。

  onnx方式直接加载,请参考我的上一篇博客,下面我们来看下通过onnx_tensorrt加速优化的主要部分代码:

def tensorrt_backend_pfe_onnx():

    pillar_x = np.ones([1, 1, 12000, 100], dtype=np.float32)
    pillar_y = np.ones([1, 1, 12000, 100], dtype=np.float32)
    pillar_z = np.ones([1, 1, 12000, 100], dtype=np.float32)
    pillar_i = np.ones([1, 1, 12000, 100], dtype=np.float32)

    num_points_per_pillar = np.ones([1, 12000], dtype=np.float32)
    x_sub_shaped = np.ones([1, 1, 12000, 100], dtype=np.float32)
    y_sub_shaped = np.ones([1, 1, 12000, 100], dtype=np.float32)
    mask = np.ones([1, 1, 12000, 100], dtype=np.float32)

    pfe_inputs = [pillar_x, pillar_y, pillar_z, pillar_i, num_points_per_pillar,
                  x_sub_shaped, y_sub_shaped, mask]

    print("pfe_inputs length is : ", len(pfe_inputs))
    start = time.time()

    pfe_model = onnx.load("pfe.onnx")
    engine = backend.prepare(pfe_model, device="CUDA:0", max_batch_size=1)


    for i in range(1, 1000):
        pfe_outputs = engine.run(pfe_inputs)
    end = time.time()
    print('inference time is : ', (end - start)/1000)
    print(pfe_outputs)

  Now,看完主要的tensorrt的测试代码,看一下通过onnx_tensorrt优化后的输出与onnx直接加载方式的输出对比吧。

Compare rpn.onnx ONNX with TensorRT

  Ok,我们接下来需要对rpn.onnx来对比tensorrt的加速精度。由于中间涉及pillarscatter网络,我们目前就单独测试rpn.onnx的输出精度与onnx加载rpn.onnx的输出精度。

  rpn.onnx(onnx直接加载的方式同理参考上一篇博客即可)经过tensorrt优化的加速代码如下:

def tensorrt_backend_rpn_onnx():

    rpn_input_features = np.ones([1, 64, 496, 432], dtype=np.float32)

    rpn_start_time = time.time()

    rpn_model = onnx.load("rpn.onnx")
    engine = backend.prepare(rpn_model, device="CUDA:0", max_batch_size=1)

    for i in range(1, 1000):
        rpn_outputs = engine.run(rpn_input_features)

    rpn_end_time = time.time()

    print('rpn inference time is : ', (rpn_end_time - rpn_start_time)/1000)
    print(rpn_outputs)

  我们来对比一下rpn.onnx模型经过onnx直接加载方式与tensorrt优化的对比输出结果:(注:此处的rpn输出与上一篇博客数据不同,主要原因在于这里rpn输入是设置np.ones矩阵,上一篇是直接接PillarScatter网络的输出作为输入。)

ONNX与TensorRT的时间对比如下
Time/spre-processpfe.onnxpillarscatterrpn.onnxpost-processall
onnxN/A0.26035N/A0.198846N/AN/A
tensorrtN/A0.01116N/A0.0187535N/AN/A

  上面表格中可以看出pfe.onnx与rpn.onnx的计算性能提升对比,N/A代表还未进行测试。目前只是单独测试了一下,并没有进行系统测试,数据仅供参考。

onnx_tensorrt的docker镜像源:

docker pull smallmunich/onnx_tensorrt:latest
小结

  由于pfe.onnx与rpn.onnx中间嵌入了一个pillarscatter网络,所以系统测试的话需要对其进行改写,后期可能会将这部分的torch代码修改为纯python版本来进行全程测试吧。目前单独测试pfe.onnx与rpn.onnx精度损失较少,速度优化很大提升。后面,可能系统测试一下整体的速度优化比例,用python代码实现pillarscatter部分网络,具体请等待我的github更新。

参考文献

https://arxiv.org/abs/1812.05784

https://github.com/SmallMunich/nutonomy_pointpillars

https://blog.csdn.net/Small_Munich/article/details/101559424

https://blog.csdn.net/Small_Munich/article/details/102073540

评论 47
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值